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INTRODUCTION

Treatment of human variability (also called intra-
species or interindividual variability) in risk assess-
ment, including protection of sensitive subpopulations,
has traditionally been semiquantitative. For noncancer
risk assessment, a default uncertainty factor (UFH)
of 10 has been used to account for human variability
(Barnes and Dourson, 1988; U.S. EPA, 1994). This fac-
tor considers both toxicokinetic and toxicodynamic vari-
ability. A number of researchers have evaluated human
data on variability in the context of evaluating whether
this 10-fold factor accurately accounts for the variabi-
lity between the average and sensitive human in res-
ponse to chemicals (Dourson and Stara, 1983; Hattis
et ai., 1987; Kaplan, 1987; Sheenan and Gaylor, 1990;
Calabrese et ai., 1992; Calabrese and Gilbert, 1993;
Hattis and Silver, 1994; Renwick and Lazarus, 1998;
Burin and Saunders, 1999). In general, data from all
of these studies indicate that the default value of 10
for intraspecies variability is protective when starting
from a median response, or by inference, from a no-
observed-adverse-effect level assumed to be from an av-
erage group of humans. Although some of these analy-
ses (Calabrese et ai., 1992; Hattis et ai., 1987; Kaplan,
1987) noted a range of variability greater than 10-fold,
it is because these authors evaluated the total range
of human variability, rather than considering that the
uncertainty factor of 10 is applied to account for the de-
gree of variability from the population average to the
sensitive human.

By contrast, variability in the human population has
not been addressed explicitly in traditional cancer as-
sessment for genotoxic carcinogens. There are two rea-
sons for this difference. First, a different assumption
is used for the origin of the dose-response curve for
noncancer endpoints and classical (genotoxic) carcino-
gens. For noncancer endpoints, the dose-response curve
is assumed to be due to differences in sensitivity in the
test population. At low doses, only the most sensitive
members of the population are expected to respond, if
a response is observed. As the dose increases, both the

Increasing sophistication in methods used to ac-
count for human variability in susceptibility to toxi-
cants has been one of the success stories in the conti-
nuing evolution of risk ~ssessment science. Genetic
polymorphisms have been suggested as an important
contributor to overall human variability. Recently,
data on polymorphisms in metabolic enzymes have
been integrated with physiologically based pharma-
cokinetic (PBPK) modeling as an approach to deter-
mining the resulting overall variability. We present
an analysis of the potential contribution of polymor-
phisms in enzymes modulating the disposition of four
diverse compounds: methylene chloride, warfarin,
parathion, and dichloroacetic acid. Through these case
studies, we identify key uncertainties likely to be en-
countered in the use of polymorphism data and high-
light potential simplifying assumptions that might be
required to test the hypothesis that genetic factors are
a substantive source of human variability in suscep-
tibility to environmental toxicants. These uncertain-
ties include (1) the relative contribution of multiple
enzyme systems, (2) the extent of induction/inhibition
through coexposure, (3) allelic frequencies of major
ethnic groups, (4) the absence of chemical-specific
data on the kinetic parameters for the different al-
lelic forms of key enzymes, (5) large numbers of low-
frequency alleles, and (6) uncertainty regarding differ-
ences between in vitro and in vivo kinetic data. Our
effort sets the stage for the acquisition of critical data
and further integration of polymorphism data with
PBPK modeling as a means to quantitate population
variability. (0 2002 Elsevier Science (USA)
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severity of the response and the percentage of the popu-
lation affected are assumed to increase. As risk as-
sessOrs characterize the dose response at the lower
end of the curve, variability is addressed directly in
noncancer assessments. In contrast, according to the
simplest version of the cancer paradigm, cancer is as-
sumed to be a stochastic process. Although the stochas-
tic nature of the response generally refers to the prob-
ability of the chemical reacting with DNA, it can also
be interpreted as meaning that the individuals who get
cancer at lower doses are simply unlucky, not more sen-
sitive (e.g., they happened to have a DNA damage event
affecting an oncogene, rather than a noncoding DNA
region).

In reality, both assumptions are likely to be a bit
oversimplified. For example, toxicokinetic variability
will still lead to differences in tissue dose for a given
exposure, and different people may have different rates
of repair of DNA damage on top of the random nature of
the cancer process. Nonetheless, the approach for geno-
toxic carcinogens has generally considered that the
models used are sufficiently conservative that sensitive
populations are protected (U.S. EPA, 1986, 1996, 1999).
Sources of conservatism include (1) dose-response as-
sessments for cancer generally rely on chronic animal
bioassays done at high doses (where metabolism may
be saturated), so toxicokinetics and other parameters
may not be representative of those at low doses; (2) the
linear extrapolation is described as a "plausible upper
bound estimate of risk at low dose where true risk may
be lower, including zero" (U.S. EPA, 1999); and (3) it
is assumed that no threshold exists for nongenotoxic
carcinogens. Another source of conservatism for both
cancer and noncancer risk assessment is that the most
sensitive species, strain, and sex is often used, unless
there is evidence that the data are not applicable to
humans.

The traditional factor of 10 for human variability
in noncancer assessment has typically been replaced
when adequate data exist to do so, such as when data
are found on known sensitive subgroups (e.g., nitrate
RfD, U.S. EPA, 2001). Efforts are now under way
to formalize this replacement on a more systematic
basis with a factor that more accurately represents
human variability. "Data-derived" uncertainty factors
were developed (IPCS, 1994; Meek, 1994; Renwick and
Lazarus, 1998) that divide the intrahuman UFH into
equal factors of 3.16 for toxicokinetics and toxicodyna-
mics, based on the earlier work of Renwick (1991, 1993).
When chemical-specific data are available, the toxicoki-
netic or toxicodynamic components may be replaced
with factors derived from the data (e.g., IPCS, 1998;
Dourson et al., 1998; Murray and Andersen, 2001). An
international effort under the auspices of the interna-
tional Programme on Chemical Safety has defined the
data requirements for development of data~erived un-
certainty factors, now referred to as chemical-specific

adjustment factors (CSAFs)2 to replace default uncer-
tainty factors for interspecies differences and human
variability (Meek et al., 2001; IPCS, 2001).

Another approach used to account for human vari.
ability is to use probability distributions of uncertainty
factors to characterize the population and hence UFH
(Baird et al., 1996; Slob and Pieters, 1998; Price et al.,
1997; Swartout et al., 1998). One approach to character-
ize the human distribution (and UFH) is based on toxi-
cological "first principles," using data on heterogeneity
in animals and assumptions about the relationship be.-
tween animal and human heterogeneity (Baird et al.,
1996; Baird, 2001). Another approach is to estimate a
distribution of UFH based on the U.S. EPA definition
of the Rffi (Swartout et al., 1998; Price et al., 1997). In
brief, a log-normal distribution is assumed, with the dis-
tribution parameters set such that the median is 10°.5
and the 95th pereentile is 10. Slob and Pieters (1998)
used similar assumptions about the shape and width
of the distribution to estimate a distribution of UFH.
Hattis and colleagues have been collecting data for a
number of years on human variability in parameters
representing steps in the pathway from external expo.
sure to production of biological response (e.g., Hattis
and Silver, 1994; Hattis and Barlow, 1996; Hattis et al.,
1999a,b). Using this database, they estimated that if
the population distribution is normal out to the extreme
tails, a dose 1/10 that corresponding to a 5% effect level
would be associated with an effect incidence ranging
from slightly less than 1/10,000 (for a median chemical/
response) to an incidence of a few per thousand (for
chemicals with high interindividual variability) (Hattis
et al., 1999b).

Other authors have used physiologically based phar-
macokinetic (PBPK) modeling, sometimes in combina-
tion with Monte Carlo analysis, to evaluate the com-
posite effect of variability in a number of physiological
parameters. Dankovic and Bailer (1993) used a PBPK
model for methylene chloride to evaluate how exer-
cise and variability in metabolism by glutathione s.
transferases (GST) affects the calculated tissue dose
and therefore the cancer risk. Clewell and Andersen
(1996) reviewed the use of Monte Carlo analysis with
PBPK modeling to determine distributions of risks and
effect levels due to parameter variability and uncer-
tainty in PBPK models.

Genetic variability can make an important contribu-
tion to human variability, such as in the form of poly-
morphic genes for metabolism or repair. Although it has
long been recognized that genetic polymorphism plays

2 Abbreviations used: CYP, cytochrome P450; PBPK, physiologi-
cally based pharmacokinetic; Vmax, maximal enzyme velocity; Km,
Michaelis-Menten constant; CSAF, chemical-specific adjustment
factors; GST, glutathione S-transferase; COHb, carboxyhemoglobin;
DPX, DNA-protein cross-links; AChE, acetylcholinesterase;
DFP, diisopropylfiuorophosphate; DCA, dichloroacetic acid; GSTZ,
glutathione transferase~; MTBE, methyl tert-butyl ether.
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It is also important to note what this paper does not
address. Consideration of the effects of polymorphisms
on toxicodynamics (defined for these purposes as the
aspects that affect the body's response to the chemi-
cal) is beyond the scope of this paper. The impact of ge-
netic polymorphisms on toxicodynamics may be more
complex than the effects of polymorphisms on toxico-
kinetics.

METHODS

Potential candidate compounds were identified
through a multiple-step screening process. In the first
step, recent reviews (Puga et al., 1997; Daly et ai.,
1998; Eaton and Bammler, 1999; Ingelman-Sundberg
et al., 1999; Omiecinski et ai., 1999; Tanaka et al.,
2000; Wormhoudt et al., 1999) were used to identify a
list of metabolizing genes with demonstrated polymor-
phisms affecting activity. Data from these review ar-
ticles and studies identified through supplemental lit-
erature searches in Medline and Toxline were used to
compile an initial list of 17 candidate toxicologically sig-
nificant chemicals that are substrates for polymorphic
enzymes (Table 1).

This initial list of candidate compounds was further
culled, based on the strength of the database for each
substance, as evaluated by applying the following four
criteria. First, the metabolic pathway had to be well-
characterized, including identification of the isozyme
involved in all major steps. For example, it was not

TABLE 1
Data Availability for Candidate Chemicals

Key Allelic
enzymes frequency data Phenotype PBPK
identified for key enzyme data modelChemica!

an important role in driving the variability in xenobi-
otic metabolism, this awareness has typically not trans-
lated into the use of these data in a quantitative sense
for risk assessment. Instead, CSAFs are based on ratios
of a critical metric for the mean of the main group and
percentiles for the whole population (Meek et al., 2001;
IPCS, 2001). Although few assessments have been de-
veloped to date using CSAFs, this approach acknowl-
edges the applicability of incorporating data on key pa-
rameters, such as polymorphism data, in the context of
a PBPK model to estimate population variability in the
dose metric of interest.

The pharmaceutical field has recognized for years the
importance of genetic polymorphism of genes that mod-
ulate drug kinetics, resulting in the growing field of
pharmacogenetics. In the environmental area, a con-
tribution of genetic variability was recognized as early
as 1985 (Calabrese, 1985), but researchers have only re-
cently begun to investigate the quantitative effect of ge-
netic variability on tissue dose for individual chemicals.
Renwick and Lazarus (1998) examined classical phar-
macokinetic parameters (e.g., clearance or area under
the curve) for genetically different populations exposed
to a number of pharmaceuticals and calculated the frac-
tion of the exposed population that would not be cov-
ered by a 3.16-fold factor for toxicokinetic variability.
One approach used by several groups (e.g., Heijmans
et al., 2000; Katoh et ai., 2000; London et al., 2000)
has been to conduct epidemiology studies evaluating
the association between the presence of polymorphisms
and increased risk of an adverse outcome, such as car-
diovascular disease or cancer associated with a spe-
cific chemical exposure. Another approach is to evaluate
how genetic polymorphisms affect the tissue dose of the
toxic agent and incorporate that determination into the
traditional risk assessment paradigm (Dankovic and
Bailer, 1993; El-Masri et ai., 1999).

In this paper, we use a case study approach to iden-
tify critical issues and data needed for the quantitative
use of data on polymorphisms in metabolic enzymes
in risk assessment. This effort outlines the extent to
which existing data can lead to informative applica-
tion of genetic polymorphism for quantitative risk as-
sessments by identifying areas in which simplifying as-
sumptions are likely to be needed and by identifying
minimum data requirements that are likely to be re-
quired. An additional purpose of this work is to identify
chemicals amenable to a more quantitative analysis.
Currently ongoing work, to be described in a follow-up
paper, will use data from these case studies, together
with appropriate PBPK models, to evaluate how the
polymorphisms affect predicted tissue dose, and the im-
plications for UFH and for cancer risk assessment. In
particular, the follow-up work will explore the quanti-
tative relationship between the enzyme variability ob-
served in vitro and the resulting variability in tissue
dose.
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a Partial indicates that some, but not all, of the key information is
available.
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weighted average of the groups for which data were
available.

RESULTS

Methylene Chloride (Dichloromethane)

Methylene chloride is used extensively as an indus-
trial solvent and paint stripper. The liver is the primary
target of chronic oral and inhalation exposure. Neuro-
toxicity is the primary effect following acute high-level
exposure, although liver toxicity is also observed (re-
viewed in ATSDR, 1999; IARC, 1999). The production
of carboxyhemoglobin (COHb) from methylene chlo-
ride metabolism can also result in toxicity, particu-
larly acute effects. Methylene chloride has not been
shown to cause tumors in humans, but NTP (1986)
concluded that there was "clear evidence" for carcino-
genicity in male and female mice, based on increases in
alveolarlbronchiolar adenomas and carcinomas and in
hepatocellular adenomas and carcinomas. There was
also "clear evidence" of carcinogenicity in female rats
and "some evidence" for carcinogenicity in male rats,
based on increases in benign neoplasms of the mam-
mary gland in both sexes.

As shown in Fig. 1, methylene chloride is metabolized
via two major pathways (Gargas et al., 1986). A high-
affinity, low-capacity pathway is mediated by CYP2El,
producing carbon monoxide, which forms COMb in the
blood. A lower affinity, higher capacity pathway occurs
in the cytosol via GST, producing formaldehyde and
carbon dioxide. Pharmacokinetic modeling studies have
found that tumorigenicity correlates with production
of metabolites in the lung and liver via the GST path-
way and that the production of metabolites via the CYP
pathway does not affect tumorigenicity (Reitz, 1990;
Andersen and Krishnan, 1994; Casanova et ai., 1996).
The lung carcinogenici ty of methylene chloride in mice,
but not in rats, has been attributed to the greater de-
gree of metabolism occurring via the GST pathway in
mice.

sufficient to know that a cytochrome P450 (CYP) cata-
lyzed a specific step; identification of the enzyme as
CYP3A4 or CYP2C9, for example, was necessary. Sec-
ond, allelic frequency data had to be available for all
enzymes playing a major role in the metabolism of the
compound. Although the initial selection of the chemi-
cal was based on a polymorphic enzyme being involved
in the chemical's metabolism, this second criterion re-
quired that other enzymes involved in the chemical's
metabolism not have significant uncharacterized poly-
morphism. Third, at least some phenotype data (ie.,
kinetic parameters such as the Vmax and Km) had to be
known for the proteins encoded by each major variant
allele. At this step, we did not require that these ki-
netic parameters be known for the chemical of interest,
since that was part of the literature review in the case
study. Fourth, an existing PBPK model had to be avail-
able, or an existing model for a related compound had
to be readily adaptable. The list was further culled by
eliminating chemicals that are primarily metabolized
by CYP2E1, since there is considerable variability in
the activity of this enzyme that is not due to polymor-
phism, and focusing on polymorphism data would ig-
nore a major source of variability. In addition, an at-
tempt was made to avoid chemicals with very complex
metabolic pathways involving a number of polymorphic
enzymes, although we were unable to completely avoid
chemicals metabolized by multiple enzymes. Three of
the candidate chemicals (chlorpyrifos, diazinon, and
parathion) had similar mechanisms of toxicity. Of these,
parathion was chosen, since it is the chemical with the
best-characterized metabolism. Based on this screen-
ing process, we chose four diverse compounds for this
study, methylene chloride (dichloromethane), warfarin,
parathion, and dichloroacetic acid. As described in the
rest of this paper, the literature on the toxicity and toxi-
cokinetics was reviewed in detail for each chemical, in
order to determine the feasibility of conducting a more
quantitative analysis using a PBPK model to determine
variability in tissue dose.

Overall genotype frequencies were calculated from
allele or genotype frequency data provided in the
references cited within the respective table. Where al-
lele frequency data were provided, the corresponding
genotype frequencies were calculated assuming Hardy-
Weinberg equilibrium, ie., using the equation 1 = (fre-
quency of allele 1 + frequency of allele 2 . . . + frequency
of allele n)2. The U.S. average genotype frequency was
calculated as the sum of the genotype frequency for
each ethnic group multiplied by the percentage of the
U.S. population represented by that ethnic group. The
percentage of the U.S. population represented by eth-
nic groups was used as reported in El-Masri et at.
(1999): Caucasians 72.5%, African Americans 12.2%,
Hispanics 11.4%, and Asian Americans 3.9%. If no data
were available for a particular group, then the contri-
bution of that group was considered to be equal to the
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FIG. 1. Summary of methylene chloride meta1X>lism. Adapted
from Gargas et oJ. (1986).
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TABLE 2
Population Distributions of GS1'T Genotypesa

Genotype frequency

Population +/+ ,-if/'"'" "'/~

0.19
0.22
0.10
0.62
0.20

0.49
0.50
0.43
0.33
0.48

Caucasian
African American
Hispanic
Asian American
U.S. averageb

0.31
0.28
0.47
0.05
0.32

a Adapted from data presented in EI-Masri et al. (1999) and Nelson
et al. (1995) and assuming Hardy-Weinberg equilibrium, where "+"
and "-" refer to the wild-type and null alleles, respectively.

b U.S. average calculated as for Table 1.


