Review of the *In Vivo* Mammalian Assays:

Challenges and Considerations for Conducting and Interpreting these Screening Assays

Leah Zorrilla, PhD
Investigative Toxicology Division
Integrated Laboratory Systems (ILS), Inc.
23 April 2013
ILS Experience with Tier 1 Assays

- 18 Uterotrophic Assays
- 21 Hershberger Bioassays
- 11 Female Pubertal Assays
- 10 Male Pubertal Assays
- 30 Range Finding Assays
EDSP Tier 1 In Vivo Mammalian Assays

- Uterotrophic Assay (OPPTS/OCSTEP 890.1600)
- Hershberger Bioassay (OPPTS/OCSTEP 890.1400)
- Pubertal Female Assay (OPPTS/OCSTEP 890.1450)
- Pubertal Male Assay (OPPTS/OCSTEP 890.1500)

- Study Design and Endpoints
- Dose Range Finding Studies
- Performance Criteria
- Study Interpretation
- Challenges/Solutions
- Future of these Screening Assays
Uterotrophic Assay

Purpose
To detect potential estrogenic chemicals through a rapid *in vivo* screening assay

Study Design
- 2 Test Substance dose levels, 17α-Ethinyl Estradiol (positive control)
- **Maximum Tolerated Dose (MTD)**- defined as dose that ensures animal survival without significant toxicity or distress up to the limit dose (1000 mg/kg/day)

Immature Model

<table>
<thead>
<tr>
<th>PND</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wean, Assign Treatment Groups</td>
<td>Daily Body Weight and Dose Administration</td>
<td></td>
<td></td>
<td>Necropsy</td>
</tr>
</tbody>
</table>

Ovariectomized (OVX) Model

<table>
<thead>
<tr>
<th>PND</th>
<th>42</th>
<th>51</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OVX</td>
<td>Daily Vaginal Smears for Estrous</td>
<td>Daily Body Weight and Dose Administration</td>
<td></td>
<td></td>
<td>Assign Treatment Groups</td>
<td>Necropsy</td>
</tr>
</tbody>
</table>
Uterotrophic Assay

Study Interpretation

- A statistically significant **increase** in uterine weight (wet and/or blotted) compared to vehicle control is a **positive** result.

Performance Criteria (Blotted Uterine Weight)

- Immature Model: <0.09% of BW
- OVX Model: <0.04% of BW

*Immature Model
Vehicle Selection
- Solubility/stability
- Route of administration
 - Oral vs. subcutaneous

Dose Selection
- Range Finding Studies necessary; dose age matched intact animals for 3 days; assess body weight changes/clinical observations
 - Oral dose level of EE in the OVX model

Experienced Prosectors
- Performance Criteria

Other Considerations
- Positive control in each study
Hershbergerer Bioassay

Purpose
A short term in vivo screening assay for potential androgen agonists and antagonists /5α-reductase inhibitors

Study Design
Agonist assay- Vehicle Control (VC), 2 test substance dose groups, positive control-Testosterone Propionate (TP)
Antagonist assay- Control (VC+ TP), 3 test substance dose groups + TP, and positive control-Flutamide (FT) + TP

MTD
• Dose that avoids death and suffering or distress, and does not cause a final BW loss of >10%, up to the limit dose of 1000 mg/kg/day
Necropsy

- Weights of Androgen-dependent tissues are obtained: Ventral Prostate, Seminal vesicle with fluid and coagulating gland, Levator ani and bulbocavernous muscles (LABC), Glans penis, Cowper’s Glands
Hershberger Bioassay

Study Interpretation
A positive result is a significant change in the weight of two tissues compared to respective controls
- Agonist - increase in weights
- Antagonist/5α-reductase inhibitors - decrease in weights
(note: evaluate body weight changes and coefficients of variation)

Performance Criteria

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Maximum Allowable CV Androgen Agonist</th>
<th>Maximum Allowable CV Androgen Antagonist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glans Penis</td>
<td>22%</td>
<td>17%</td>
</tr>
<tr>
<td>Cowper’s Gland</td>
<td>55%</td>
<td>35%</td>
</tr>
<tr>
<td>LABC</td>
<td>30%</td>
<td>20%</td>
</tr>
<tr>
<td>Ventral Prostate</td>
<td>45%</td>
<td>40%</td>
</tr>
<tr>
<td>Seminal Vesicle</td>
<td>40%</td>
<td>40%</td>
</tr>
</tbody>
</table>
Hershberger Bioassay Challenges/Lessons Learned

Dose Selection/MTD
- Range Finding Studies - dose intact age matched animals for 10 days; assess body weight changes/clinical observations

Age at Castration
- Sexually Mature

Stagger start dose administration
- Necropsy over 2 days

Experienced Prosectors
- Performance Criteria

Optional measurements
- **Liver**, Adrenal, and Kidney weights; T, LH, T\(_4\), T\(_3\) serum hormone analyses; food consumption
Female/Male Pubertal Assays

Purpose- Female Assay
To detect test substances that have estrogenic/antiestrogenic or antithyroid activity, or which alter pubertal development via changes in steroidogenesis, gonadotropin secretions, prolactin, or hypothalamic function.

Purpose- Male Assay
To detect chemicals with antithyroid, androgenic, or antiandrogenic [androgen receptor (AR) or steroid-enzyme-mediated] activity or agents which alter pubertal development via changes in gonadotropins, prolactin, or hypothalamic function.

MTD- Statistically significant decrease in body weight gain, no more than approximately 10% body weight loss compared to vehicle controls, without toxicity
Study Designs

Female Pubertal

- PND: 3 or 4
- Cull Pups
- Wean, Assign Treatment Groups
- Daily Examination for Vaginal Opening and Estrous Cyclicity
- Daily Body Weight and Dose Administration
- Necropsy

Male Pubertal

- PND: 3 or 4
- Cull Pups
- Wean, Assign Treatment Groups
- Daily Examination for Preputial Separation
- Daily Body Weight and Dose Administration
- Necropsy
Pubertal Assay-Endpoints

<table>
<thead>
<tr>
<th>Females</th>
<th>Males</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Weight</td>
<td>Body Weight</td>
</tr>
<tr>
<td>- Initial, final, BW at vaginal opening (VO)</td>
<td>- Initial, final, BW at preputial separation (PPS)</td>
</tr>
<tr>
<td>Tissue weights</td>
<td>Tissue weights</td>
</tr>
<tr>
<td>- Adrenal glands, liver, pituitary gland, kidneys, thyroid, ovaries, uterus</td>
<td>- Adrenal glands, liver, pituitary gland, kidneys, thyroid, epididymides, LABC, prostate (ventral and dorsolateral), seminal vesicles (w/ and w/out fluid), testes</td>
</tr>
<tr>
<td>Histopathology</td>
<td>Histopathology</td>
</tr>
<tr>
<td>- Kidney, thyroid, ovary, uterus</td>
<td>- Kidney, thyroid, testis, epididymis</td>
</tr>
<tr>
<td>Serum Endpoints</td>
<td>Serum Endpoints</td>
</tr>
<tr>
<td>- T(_4), TSH, clinical chemistry panel</td>
<td>- T(_4), TSH, Testosterone, clinical chemistry panel</td>
</tr>
<tr>
<td>Age at Pubertal Development</td>
<td>Age at Pubertal Development</td>
</tr>
<tr>
<td>- VO</td>
<td>- PPS</td>
</tr>
<tr>
<td>Estrous cycle evaluations</td>
<td></td>
</tr>
<tr>
<td>- Estrus stage, age at first estrus, cycle length, percent cycling</td>
<td></td>
</tr>
</tbody>
</table>

Pubertal Assay Performance Criteria

Performance Criteria
Mean, acceptable range, and CV criteria for vehicle control group given for study to be acceptable for most endpoints:
- Males given for SD and Wistar rats, Females SD only
- Weaning BW (males), Final BW; BW at VO/PPS
- Day of VO/PPS
- Tissue Weights
- Hormone Concentrations

No Criteria given for:
- Female TSH, weaning BW
- Dorsolateral prostate
- Clinical chemistries
- Histopathology endpoints
Data Interpretation for Pubertal Assays

Potential for test substance to interact with endocrine system
Dose levels examined for MTD (limit dose 1000 mg/kg/day)
- Body weight loss does not exceed ~10%, BW gain decrease
- Adverse clinical observations and histopathology of kidney or other target organs
- Blood clinical chemistry values

Negative results
- Was the high dose tested at or near the MTD?
- Evaluate performance criteria

Positive results
- Evaluate body weight loss
- Evaluate performance criteria

Emphasis on the complementary and redundant effects across Tier 1 Assays
Female Pubertal Assay Potential MOA

<table>
<thead>
<tr>
<th>Estrogen Agonist</th>
<th>Inhibition of Steroidogenesis</th>
<th>Disruption of Hypothalamic-pituitary axis</th>
<th>Thyrotoxicants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early VO, pseudoprecocious puberty</td>
<td>Delayed VO</td>
<td>Alterations in VO</td>
<td>↓ T₄</td>
</tr>
<tr>
<td>↓ BW at VO</td>
<td>Delayed first estrus</td>
<td>Alterations in cyclicity</td>
<td>↑ TSH</td>
</tr>
<tr>
<td>Early first estrus</td>
<td>Persistent diestrus</td>
<td>Altered ovarian uterine or pituitary weights</td>
<td>↑ Follicular cell height ↓ Colloid area</td>
</tr>
<tr>
<td>Altered organ histology</td>
<td>↓ uterine weight</td>
<td>Altered organ histology</td>
<td>↑ Thyroid weight</td>
</tr>
<tr>
<td>Possible persistent estrus</td>
<td>Altered organ histology</td>
<td></td>
<td>↑ Liver weight (for compounds which induce hepatic clearance of thyroxine) or no effect</td>
</tr>
<tr>
<td>↓ ovarian weight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑ uterine weight</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Male Pubertal Assay Potential MOA

<table>
<thead>
<tr>
<th>Androgen Agonist</th>
<th>Steroidogenesis Inhibitor or HPG Suppression</th>
<th>Thyrotoxicants</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑ Age of Puberty</td>
<td>↑ Age of Puberty</td>
<td>↓ T₄</td>
</tr>
<tr>
<td>↓ Ventral prostate, seminal vesicles, LABC, epididymis weight</td>
<td>↓ Ventral prostate, seminal vesicles, LABC, epididymis weight</td>
<td>↑ TSH</td>
</tr>
<tr>
<td>↑ Testosterone</td>
<td>↓ Testosterone or no effect</td>
<td>↑ Thyroid weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ Follicular cell height ↓ Colloid area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ Liver weight (for compounds which induce hepatic clearance of thyroxine) or no effect</td>
</tr>
</tbody>
</table>
Pubertal Assay Challenges/Lessons Learned

Dose Selection to meet MTD
- Solubility/Stability
- Range Finding Studies necessary; dose age matched animals for 7-14 days; assess body weight changes/clinical observations, liver, kidney weights, clinical chemistry

Logistical Considerations
- Animal Availability
- Diet, Water, Bedding
- Pup DOB
- Utilization of all pups (run male/female concurrently)
- Randomization/Allocation (1 pup/sex/group)
- Experienced staff for in-life endpoints - VO/PPS
- Separate necropsy holding room
Pubertal Assay Challenges/Lessons Learned

Necropsy
• Euthanasia route
• Limit number of prosectors to meet performance criteria
• Necropsy over 2 days

Hormone Levels
• Variability in hormone levels due to stress, method of euthanasia
• Interpretation of thyroid hormones (T_4 and/or TSH) without corresponding changes in follicular cell height and colloid area
• Hepatic enzyme induction
• Retain liver
Pubertal Assay Challenges/Lessons Learned

Estrous Cycle Evaluations
- Only 1-2 cycles by time of necropsy
- Cycles are often irregular
- Inherent differences in uterine/ovarian weights due to different stages of the cycle

Statistics
- ANOVA, ANCOVA, and trend analysis
- Covariate for date of weaning (21) or day of first dose administration (22/23)
- Evaluation of thyroid and ovarian histopathology
Pubertal Assay Challenges/Lessons Learned

Histopathology- Female Pubertal
Five sections of left ovary, two sections of uterine horns

Histopathology- Male Pubertal
Left testis and left epididymis

Pathologist recommendations (from Regional STP meeting)
- Standardize terminology and ovarian sectioning
- Follicular counts not necessary for screening
- Rely on necropsy vaginal smears for estrous staging
- Standardize fixative for testis/epididymis- Modified Davidson’s fluid rather than Bouin’s fixative (Latendresse et al., 2002)
- Save testis and epididymis not used for histology
Pubertal Assay Challenges/Lessons Learned

Histopathology- Thyroid Gland
- Two sections of thyroid gland
- Subjectively assessed for follicular cell height and colloid area using a five point grading scale (1=shortest follicular cell height/least colloid area; 5=tallest follicular cell height/largest colloid area)

Challenges
Hepatic Enzyme Inducers
- Increases in liver weights, T₄/TSH changes
- Retain liver

Histopathology- L. Kidney
- Systemic toxicity
Considerations for Future Testing

Overcoming challenges presented took **time** and **resources**

- Understanding available data on test substance
- Choosing an appropriate MTD (range finding studies)
- Logistical considerations

Some additional clarifications/considerations for future test orders

- Statistical analyses
- Randomization/Allocation
- Usefulness of Clinical Chemistry
- EPA deadlines and scheduling
Strengths of Tier 1 *In Vivo* Mammalian Assays

- *In vivo* assays incorporate ADME

- These assays utilize models that evaluate the developing endocrine system

- Evaluate more than 1 MOA

- Complementary endpoints within the assay (i.e. PPS, tissue weights, hormones, histopathology)
Acknowledgments

Susan Borghoff, PhD, DABT
Jeffrey Davis, BS, LATG
Carol Swartz, DVM, PhD
Molly Boyle, DVM, MPH, DACVP
Lauren Staska, DVM, PhD, DACVP

Donald Stump, PhD, DABT, WIL Laboratories
Robert Parker, PhD, DABT, Huntingdon Life Sciences
Sue Marty, PhD, DABT, The Dow Chemical Company