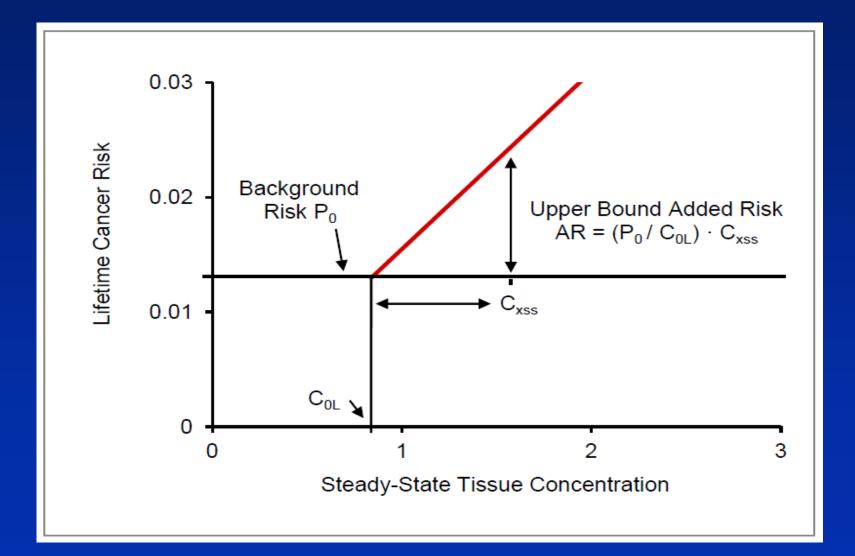
A Novel Bottom Up Approach to Bounding Potential Human Cancer Risks from Endogenous Chemicals

> Thomas B. Starr, PhD TBS Associates, Raleigh NC

Alliance for Risk Assessment Workshop Crystal City VA 28 May 2013


Typical Top Down Approach

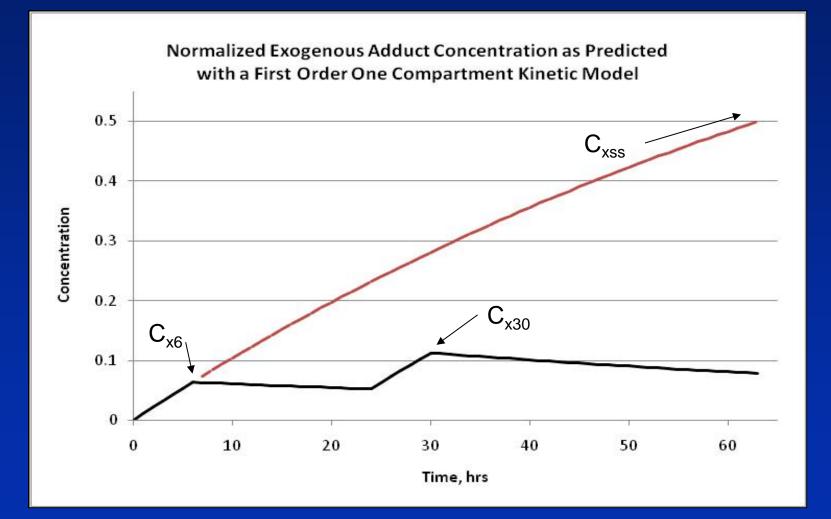
- Cancer and exogenous exposure data extracted from epidemiology studies or laboratory animal bioassays
- Empirical or biologically-based dose-response models fit to cancer data vs exogenous exposure, e.g., airborne concentration, cumulative exposure
- Estimated BMDL_x used to calculate unit risk for use in linear extrapolation or, alternatively, to compute MOEs for substances with nonlinear MOAs

The Bottom Up Approach

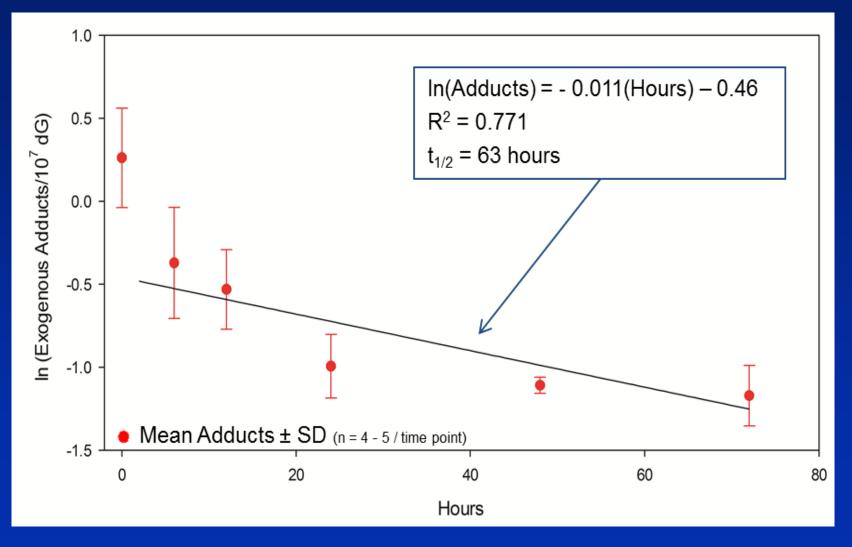
- Suitable for chemicals present in the body as a result of normal endogenous processes, e.g., metabolism
- Attributes all background risk P₀ to tissue-specific endogenous background exposure C₀
- Assumes linear dose-response for added risk AR vs exogenous exposure C_{xss} with upper 95% confidence bound slope estimate of P_0 / C_{0L} : AR = $(P_0 / C_{0L}) \cdot C_{xss}$
- P₀ data from US SEER cancer statistics
 C₀, C_{0L}, and C_{xss} data from short-term animal studies

Bottom Up Approach Elements

Bottom Up Approach Features

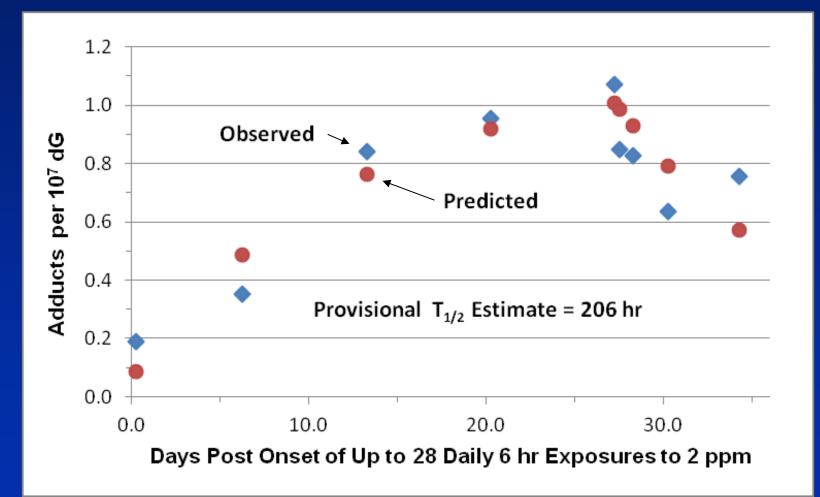

- Bounds low-dose cancer risk without using high dose cancer data from epidemiology studies or animal bioassays
- Provides a completely independent "reality check" on extrapolations from high-dose data
- Conservative:

All background risk attributed to endogenous background exposureAssumes linearity at low dosesUpper bound estimates of lifetime risk


Estimating Steady-State Exogenous Adducts from Time Point-Specific Data

- Used one compartment model with constant forcing and first order elimination with half-life $T_{1/2} = T \cdot \ln(2)$
- For N²-hydroxymethyl-dG adducts in rats (10 ppm for 6 hrs) $T_{1/2} = 63$ hrs, T = 90.9 hrs (Swenberg 2012)
- At the end of one 6 hour exposure: $C_{xss} = C_{x6} / (1 - \exp(-6/T)) = 15.65 \cdot C_{x6}$
- After two 6 hour exposures on consecutive days: $C_{xss} = C_{x30} / \{[1 - \exp(-6/T)] \cdot [1 + \exp(-24/T)]\} = 8.85 \cdot C_{x30}$

One Compartment Model: Adduct Time Profile



N²-Hydroxymethyl-dG Elimination Half-Life Data

One 6 hr exposure of rats to 10 ppm, Swenberg et al., 2012

New N²-Hydroxymethyl-dG Elimination Half-Life Data

Swenberg (unpublished data)

N²-hydroxymethyl-dG Adducts in Monkeys Exposed Twice for 6 hrs to 2 ppm ¹³CD₂O

Tissue	Endogenous Adducts at 30 hrs	Exogenous Adducts at 30 hrs	Exogenous Adducts at Steady-State
Nasal Epithelium Mean ± se Lower 95% Bound	2.49 ± 0.23 2.11 C _{oL}	0.25 ± 0.020 C _{x30}	2.21 ± 0.18 C _{xss}
Bone Marrow Mean ± se Lower 95% Bound	17.5 ± 1.31 15.34 C _{oL}	< 0.00103 ^a C _{x30}	<0.00912 ^a C _{xss}

a: no exogenous adducts were detected in bone marrow; upper limit estimate based on the detection limit reported in Moeller et al. (2011).

Comparison of Bottom Up and Top Down Upper Bound Added Risk Estimates

Cancer	Background Risk P₀	Bottom-Up Slope P ₀ /C _{0L} ª	C _{xss} at 2 ppm	Bottom-Up Risk at 1 ppm⁵	USEPA Risk at 1 ppm
NPC	7.25 x 10 ⁻⁴	3.44 x 10 ⁻⁴	2.21 ± 0.18	0.038 x 10 ⁻²	1.1 x 10 ⁻²
LEU	1.30 x 10 ⁻²	8.50 x 10 ⁻⁴	< 0.00912	< 3.9 x 10⁻ ⁶	5.7 x 10 ⁻²

For NPC, $AR_{BU} = (3.44 \times 10^{-4} \cdot 2.21) / 2 = 0.038 \times 10^{-2}$

= 29.8-fold lower than AR_{EPA}

For LEU, $AR_{BU} = (< 8.5 \times 10^{-4} \cdot 0.00912) / 2 = < 3.9 \times 10^{-6}$ = > 14,615-fold lower than AR_{EPA}

Bottom Up Uncertainties (Human Analysis)

P₀ very precise due to large number of cases in US population of more than 300,000,000:
 Annually, > 2,550 NPC, > 45,880 LEU

NPC $P_0 = 7.2500 \times 10^{-4}$, $P_{0U} = 7.2656 \times 10^{-4}$ LEU $P_0 = 1.3000 \times 10^{-2}$, $P_{0U} = 1.3011 \times 10^{-2}$

- C₀ uncertain due to small monkey sample sizes: Nasal C₀ = 2.49 ± 0.23, C_{0L} = 2.11 Bone Marrow C₀ = 17.5 ± 1.31, C_{0L} = 15.34

- $T_{1/2}$ and C_{xss} uncertain due to small rat sample sizes

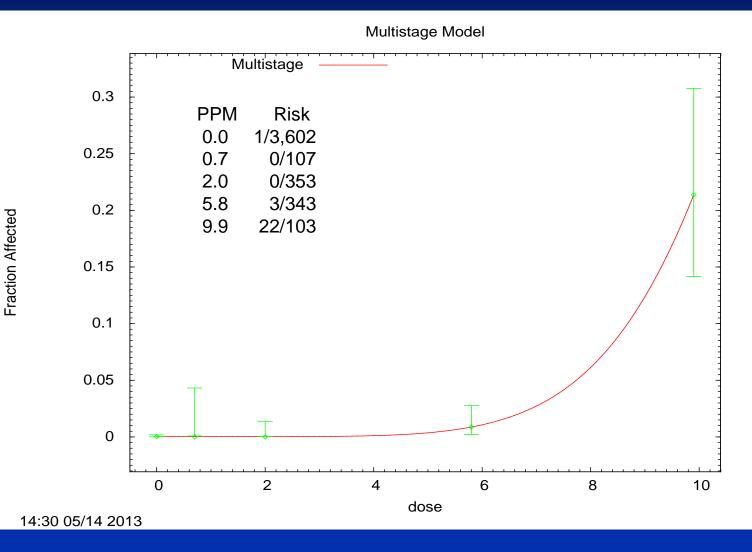
Top Down Uncertainties (Human Analysis)

NPC: - VERY small number of deaths: 2 UnExp, 7 Exp
- coarsely stratified cumulative exposure metric
- marginally significant trend due to excess in highest exposure category (3 deaths)
- non-monotonic dose-response

LEU: - small number of deaths: 7 UnExp, 116 Exp
- coarsely stratified cumulative exposure metric
- non-significant positive trend due largely to
~ 47% deficit in Unexposed group relative
to the Exposed groups
- no dose-response in Exposed groups

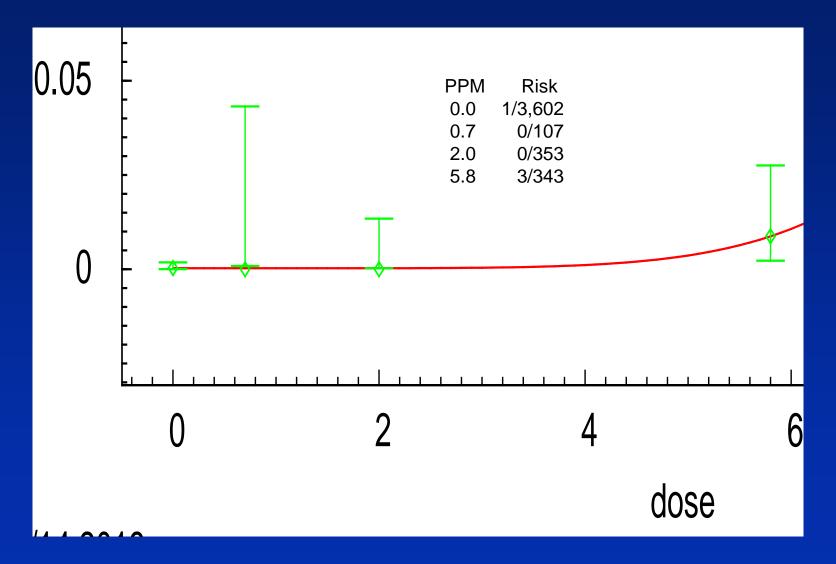
Advantages of the Bottom Up Approach

- Uses background cancer risk in humans
- Uses background (endogenous) adduct concentrations in humans, if available, or short-term animal data and equivalence assumptions
- Conservative:


Linear at low doses (consistent with additivity) All background risk attributed to endogenous adducts Provides an upper bound on low-dose slope

 Produces a completely independent "reality" check on risk extrapolations from high-dose data

Analyses of Rat Tumor Data


- Fit the multi-stage model to rat nasal tumor data vs air concentration to obtain a Top Down unit risk estimate
- Apply Bottom Up approach to the same rat tumor data to determine corresponding unit risk estimate
- Compare estimates and identify uncertainties in the two approaches as implemented with rat tumor data

Top Down MultiStage with Rat Tumor Data (1)

Maximum Likelihood fit using BMDS

Top Down MultiStage with Rat Tumor Data (2)

Maximum Likelihood fit using BMDS

Top Down Multistage with Rat Tumor Data (3)

THE CHI-SQUARE GOODNESS OF FIT STATISTIC IS .132132

MAXIMUM LIKELIHOOD ESTIMATES OF DOSE COEFFICIENTS

THE MAXIMUM VALUE OF THE LOG-LIKELIHOOD IS -79.9416846141

CALCULATIONS ARE BASED UPON ADDITIONAL RISK

GLOBAL 82 UPPER CONFIDENCE LIMITS ON RISK FOR FIXED DOSE

CONFIDENCE LIMITS FOR A DOSE OF 1.00.

▶ MLE AR < 10⁻⁶

The mle estimate of additional risk is .186606E-06The 95 percent upper confidence limit is $.134698E-02 \rightarrow \text{UCL AR} = 0.135 \times 10^{-2}$

THE RATIO OF THE 95% UCL ESTIMATE TO THE MLE ESTIMATE IS 7,218.

THE COEFFICIENTS CORRESPONDING TO THE 95.0 PERCENT UPPER BOUND ARE:

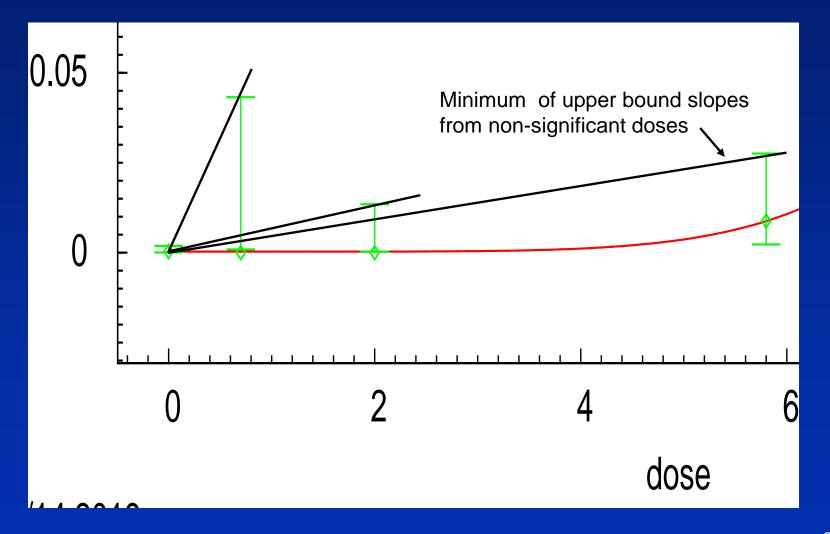
 $\begin{array}{l} Q(0) = .239464193777E-03 \\ Q(1) = .134818337981E-02 \\ Q(2) = .00000000000 \\ Q(3) = .00000000000 \\ Q(4) = .00000000000 \\ Q(5) = .00000000000 \\ Q(6) = .0000000000 \\ Q(7) = .235701733574E-07 \end{array} \longrightarrow UCL95 q_1 = 0.1348 \times 10^{-2} / ppm$

Bottom Up Approach with Rat Tumor Data

 $P_0 = 1/3,602 = 2.78 \times 10^{-4}$ $C_0 = 6.09 \pm 1.52$ $C_{01} = 3.60$ $P_{011} / C_{01} = 3.656 \times 10^{-4}$

 $P_{011} = 13.16 \times 10^{-4} = 4.73 \cdot P_0$

For 2 ppm:


 $C_{x6} = 0.19 \pm 0.04$ $C_{xss} = 0.19 \cdot 15.65 \cdot (6/24) \cdot (5/7) = 0.531$ AR = $(P_{01}/C_{01}) \cdot C_{xss} = (3.656 \times 10^{-4} \cdot 0.531) = 1.941 \times 10^{-4}$ For 1 ppm:

AR = AR at 2ppm / 2 = 1.941×10^{-4} / 2 = 0.971×10^{-4}

This is 520-fold GREATER than the Top Down MLE estimate of 0.1866 x 10⁻⁶, and 13.9-fold SMALLER than the Top Down UCL95 estimate of 0.1347 x 10⁻²

Connection to Model-Free Extrapolation

Krewski, Gaylor, Szyszkowicz. 1991. EHP 90:279-285

Bottom Up Uncertainties (Rat Analysis)

P₀ uncertain due to only 1 case in 3,602 NTP historical controls (inhalation studies only)

Nasal SCC P₀ = 2.78 x 10⁻⁴, P_{0U} = 13.16 x 10⁻⁴

- C_0 uncertain due to small rat sample sizes: Nasal $C_0 = 6.09 \pm 1.52$, $C_{0L} = 3.60$

- $T_{1/2}$ and C_{xss} uncertain due to small rat sample sizes

Top Down Uncertainties (Rat Analysis)

- VERY small exposed group sample sizes: 103 353
- Highly nonlinear dose-response MLE risk < 0.2 x 10⁻⁶ at 1 ppm, > 20% at 10 ppm
- No dose-response below 6 ppm
- High dose data are assumed, but not proven, to be relevant to risk at low doses
- MOA not known, could be all due to cell proliferation

Advantages of the Bottom Up Approach

- Uses background cancer risk in humans
- Uses background (endogenous) adduct concentrations in humans, if available, or short-term animal data and equivalence assumptions
- Conservative:

Linear at low doses (consistent with additivity) All background risk attributed to endogenous adducts Provides an upper bound on low-dose slope

 Produces a completely independent "reality" check on risk extrapolations from high-dose data

Generalizing to Other Chemicals

- Methanol (metabolized to formaldehyde)
- Acetaldehyde (N²-hydroxyethyl-dG adducts
- Vinyl Acetate (metabolized to acetaldehyde)
- Vinyl Chloride (metabolized to chloroethylene oxide, producing 1 oxoethyl and 3 exocyclic etheno adducts)
- Ethylene Oxide (4 hydroxy-ethyl adducts)

Some Criteria for Use in Risk Assessment

- Specific target sites in humans (epidemiology studies)
- Valid biomarkers of target site exposure that are plausibly correlated with the apical endpoint
- High precision/accuracy measurements that distinguish between endogenous / exogenous sources at low exogenous exposure levels
- Use conservative assumptions to fill data gaps
- Use to "reality check" and, when appropriate, replace top down analyses

Acknowledgments

James Swenberg Ben Moeller Kun Lu Ann Mason Robinan Gentry