A Decision Analytic Framework for Considering the Economic Value of Improved Risk Assessment Data

> Eric Ruder Henry Roman Industrial Economics

ARA Workshop IV - May 23, 2012

- Objective: Explore the potential value of improved risk assessment data and methods in the context of environmental regulation
- Nature of the problem
- Analytical framework
- Examples -Regulatory Case Studies
 - Lead Regulation
 - Mobile source related air toxics requirements
- Implications for ARA Framework

IEC

Nature of the Problem - IEc Evaluating Improvements in Risk Assessment

- There are numerous sources of uncertainty in risk assessment that may be addressed (at least partially) by improved risk assessment methods and/or data:
 - Improving methods for evaluating the potential risks of chemicals – e.g., mode of action or other dose-response assessment methods.
 - Identifying susceptible populations and characterizing factors that may place them at higher risk.
 - Understanding how chemicals move and change along pathways from sources to potentially exposed populations.
- Advances in these areas seem of value, but are they likely to lead tangible changes in regulatory decisions that have quantifiable net benefits for society?

Value of Information Analysis IEc

- Value of information (VOI) represents the improvement in the expected value of a decision outcome that would result from collecting additional information about one or more factors affecting a decision.
- Decision analysis approaches can quantify the value of collecting additional information before making a specific decision, or the value of adopting improved methods of data analysis.
- Involves comparison of the expected outcomes of a suite of alternative regulatory choices made with and without information believed critical for the issue.

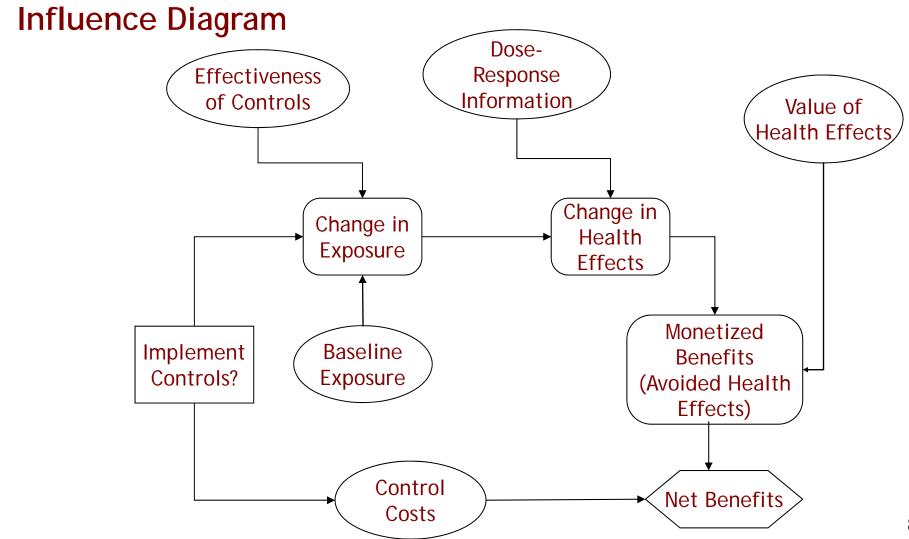
Why is VOI Important?

- Can help decision-makers make better decisions
 - identifies key decision inputs
 - helps minimize expected loss / maximize expected gain
 - increases chances of good outcome
 - makes explicit the "costs" of uncertainty
- Results provide a measure of social willingness-topay for new research
- Helps set priorities so that resources can be allocated efficiently

IEC

Evaluations of VOI as a Tool IEc

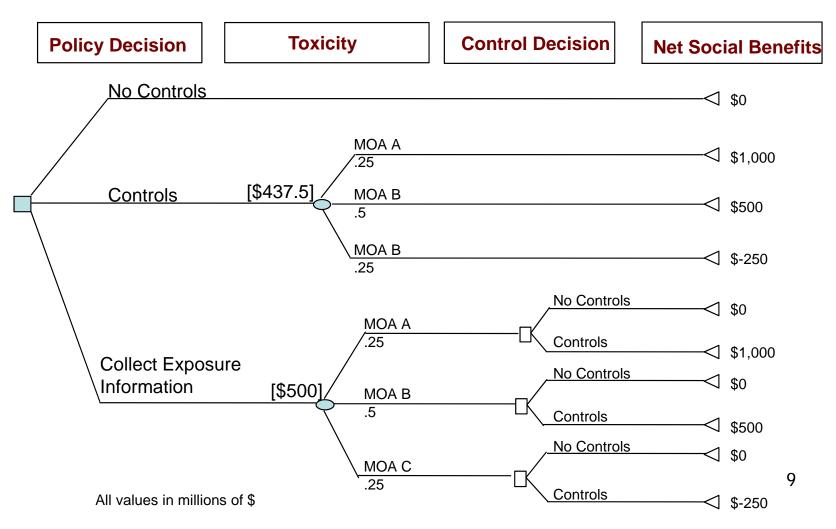
- NRC's Science and Decisions: Advancing Risk Assessment (2009)
 - Discusses VOI as a tool for understanding the tradeoffs between timely decision-making and the desire to refine the underlying science
 - Barriers to applying formal VOI broadly
 - Underlying concepts and structure still valuable: linkages between information, decision-maker behavior, and decision making objectives
 - Recommends informal VOI or value of methods analyses to inform risk assessment design


Evaluations of VOI as a Tool (cont'd) IEc

- 2010 Report of EPA's Board of Scientific Counselors (BOSC) decision analysis workshop with ORD/NRMRL
 - > VOI can be valuable, but is challenging to implement
 - Need extensive data, including probabilities for decision options & how probabilities change conditional on new information
 - Nonetheless, VOI cited as possible method to inform several case studies - e.g., regulations of chemicals with biomarker data, prioritizing IRIS evaluations
 - Benefits of VOI are the net improvements in decision outcomes minus the costs of obtaining improved information

VOI Analytic Framework

- Decision analysis approaches can quantify the value of collecting additional information before making a specific decision
- Involves comparison of the expected outcomes of a suite of alternative regulatory choices made with and without information believed critical for the issue
- Framework in a regulatory context can be illustrated using two types of diagrams:
 - Influence diagram showing the role of toxicity data and other inputs in estimating NSB
 - > Decision tree can depict a choice among (for example):
 - Taking no further regulatory action
 - Instituting additional control measures based on current information
 - Collecting additional dose-response information prior to deciding whether to institute new controls


VOI Framework

IEc

Hypothetical Decision Tree: VOI = \$500 - \$437.5 = \$62.5

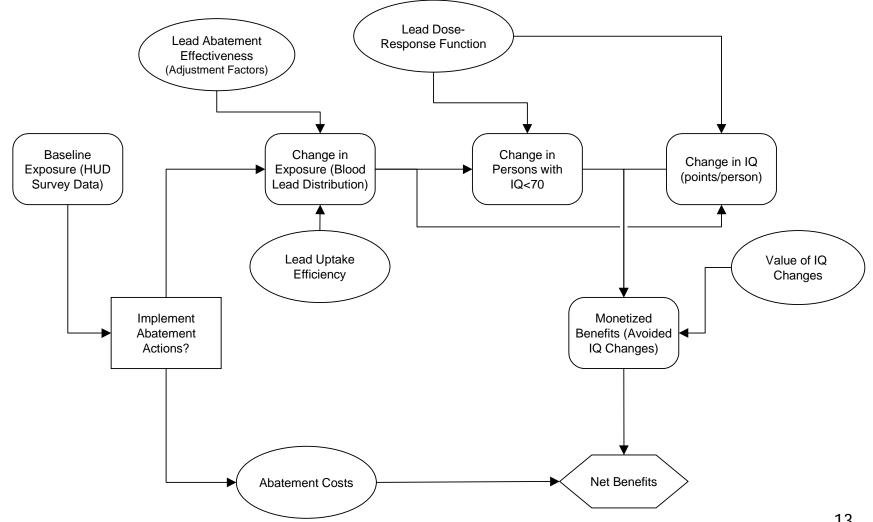
VOI Framework (continued)

- Variations in complexity of analysis:
 - Value of perfect information -- assumes that collection of information will eliminate all uncertainty in exposure
 - Value of imperfect information -- examines the potential that addition of information will resolve some, but not all of the uncertainty in exposure
 - Value of partial information -- considers the impact of uncertainty in other inputs to the decision (e.g., for the previous hypothetical example - toxicity)

IEC

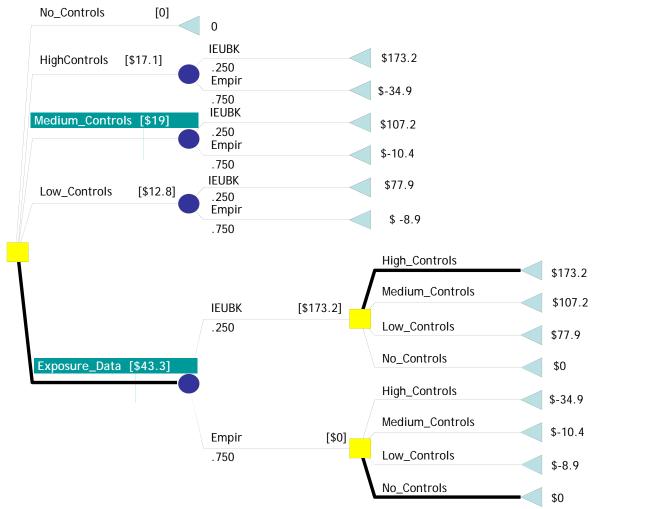
Lead Case Study - Background IEc

- Decision we analyzed (retrospectively): regulating lead in residences under TSCA Section 403
- Rule sets three standards: floor dust loading (µg/ft²); window sill dust loading (µg/ft²); and soil concentration (ppm). Violation triggers abatement
- Economic and risk analysis supporting the rule looked at 1000 combinations of these three standards
- Risk and economic estimates ultimately based on two alternative models for relationship between environmental lead and children's blood lead:
 - > IEUBK: more sensitive, says regulate stringently
 - The "Empirical" model: much less sensitive, says do not regulate
- November 1998 proposed standards reflect EPA's balancing of these two exposure outcomes


VOI Case Study - Lead Exposure IEc

COMPARISON OF NET BENEFITS, DUST STANDARDS, AND SOIL STANDARDS FOR TWO LEAD UPTAKE MODELS

	Standards that Maximize Net Benefits IEUBK Model	Proposed Standards
Floor Dust Standard Window Sill Dust Standard Soil Standard Total Cost Total Benefit Net Benefit	40 μg/ft ² 100 μg/ft ² 250 ppm \$100.4 billion \$273.6 billion \$173.2 billion	50 μg/ft ² 250 μg/ft ² 2,000 ppm \$52.8 billion \$160.1 billion \$107.2 billion
	Standards that Maximize Net Benefits Empirical Model	
Floor Dust Standard Window Sill Dust Standard Soil Standard Total Cost Total Benefit Net Benefit	80 μg/ft ² 310 μg/ft ² 4,350 ppm \$44.0 billion \$35.1 billion -\$8.9 billion	

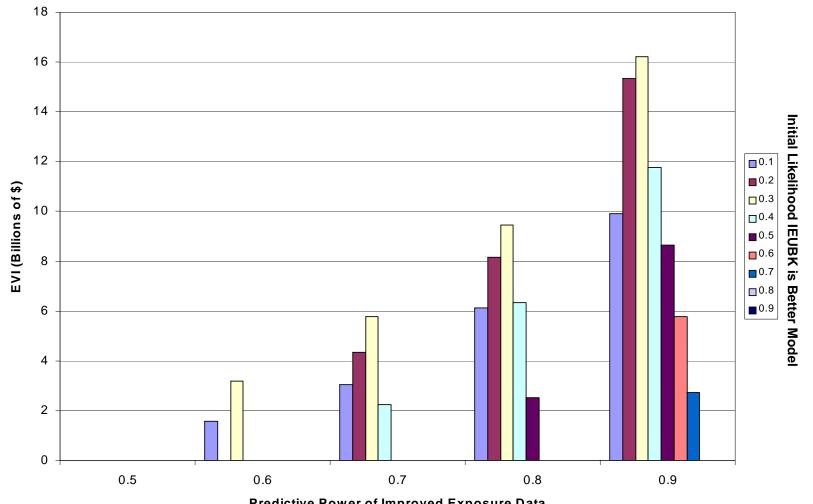

IEc Lead Rule RIA Influence Diagram

1000

Decision Tree for Lead Regulatory Decision IEc

VOI = \$43.3b - \$19b = \$24.3b

14


Effect of Delay on VOI IEc

- Delay scenarios assume:
 - Benefits are delayed if "collect exposure data" option is chosen.
 - Discounted over delay period at 3 percent annually.
- Results:
 - Perfect VOI, no delay: \$24.3 billion
 - Perfect VOI, five-year delay: \$18.4 billion
 - Perfect VOI, ten-year delay: \$13.2 billion.

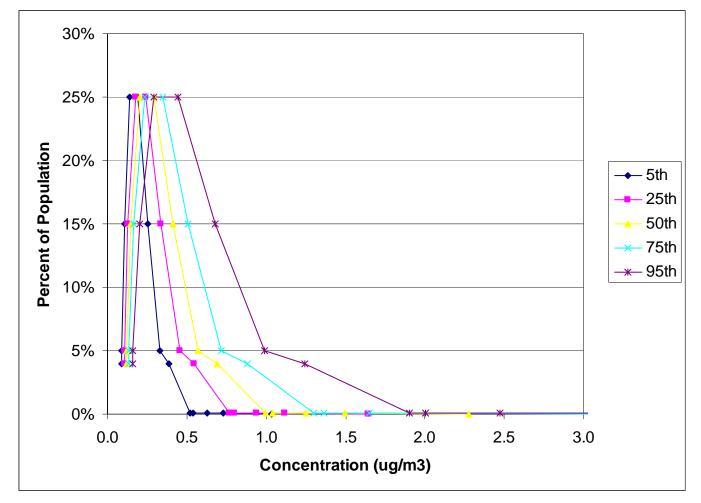
Value of Imperfect Information ^{IEc}

- Value of imperfect information analysis asks: What if improved data cannot completely resolve uptake uncertainty?
- Looked at best and worst case scenarios for power of NHEXAS-like data to resolve IEUBK/Empirical uncertainty (from 50 percent predictive accuracy to 90 percent predictive accuracy)
- Results show VOI remains substantial when improved data achieves a high level of predictive accuracy and the prior likelihood that IEUBK is correct is less than 50 percent

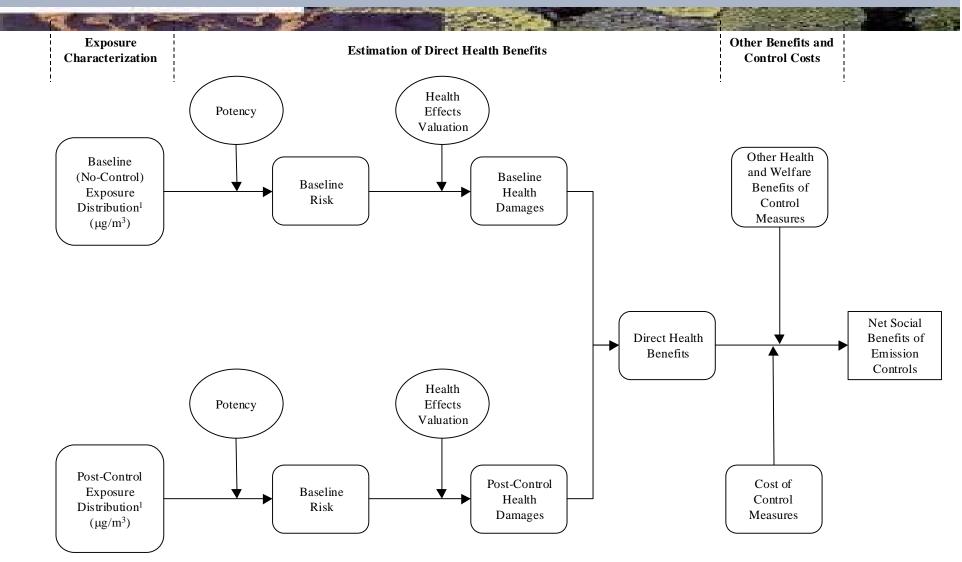
Expected Value of Imperfect Lead Exposure IEc Information

Predictive Power of Improved Exposure Data

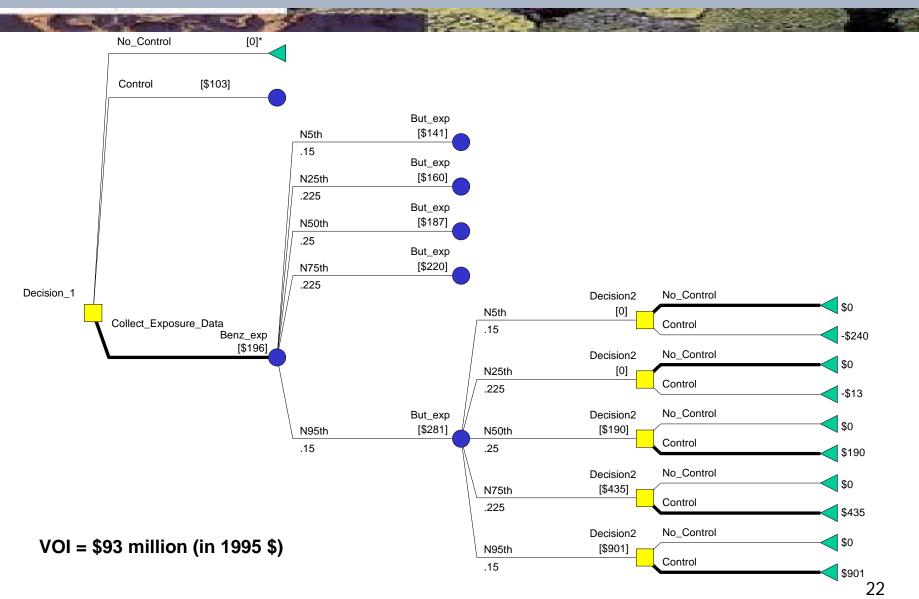
Conclusions of Lead Case Study IEc


- Value of exposure information could be very high; under best case conditions, a national exposure survey could have value in the tens of billions of dollars.
- Effect of delay in provision of information is to reduce VOI, but value of perfect information remains substantial even with 10-year delay.
- Improved exposure information must achieve a predictive accuracy of 80 to 90 percent certainty in forecasting the "correct" lead uptake model for VOI to remain substantial (e.g., no more than a 20 percent chance of predicting IEUBK if the empirical model is correct); lower levels of certainty quickly erode VOI.

VOI Case Study: Mobile Air Toxics^{IEC}


- Retrospective analysis of VOI of exposure data for benzene and 1,3-butadiene, two air toxics regulated under the 1990 CAAA.
- Developed estimates of exposure and risk in 2000 both with and without control programs -- based on information available as rules were promulgated.
- Other inputs: control costs (over \$2 billion annually); other benefits of air toxics reductions (about \$850 million annually).
- Estimate value of improved information for mobile source air toxics relative to improvements in other key uncertain inputs (e.g., toxicity).

Alternative Exposure/Distributions for 1,3-Butadiene



Calculation of Net Social Benefits ^{IEc}

¹ This includes characterizing the uncertainty in the exposure description.

Decision Tree for Motor Vehicle Air Toxics IEC

* Numbers in brackets are expected values of net social benefits at decision or chance nodes.

Conclusions of Mobile Sources Case Study

- Expected value of perfect information = \$93 million.
- Explored value of partial information by considering impact of uncertainty in toxicity of 1,3-butadiene and benzene.
 - > Value of exposure information decreases to \$9 million.
 - > Value of toxicity information is greater, \$118 million.
- Explored impact of varying dollar value of a statistical life (VSL).
 - Exposure information has value across a wide range of VSL (approximately \$3 million to \$7 million).

IFC

- VOI framework can be applied to variety of issues (pollutant regulation, global warming) and focus on different inputs (exposure, toxicity, economic valuation)
- A key constraint for formal quantitative VOI is data availability. Need data to:
 - estimate outcomes (ideally, net social benefits) in dollars
 - characterize quantitatively decision inputs (e.g., costs, population exposure, toxicity) and how they change postinformation
 - quantify uncertainty either discretely or using distributions preand post-information -- may require expert elicitation

Identifying Decisions Where VOI May be High IEc

- High Stakes, sufficient variance in outcomes across choices
- Decision expected to be sensitive to health outcomes and not dictated by non health-related factors
- Uncertainty can be represented using small number of scenarios (e.g., alternative MOAs) and associated probabilities
- Additional research (e.g., improved PBPK modeling, interpretation of biomarker data, MOA research) can change beliefs about likelihoods of key decision factor values/states
- Uncertainty in other decision inputs does not dominate uncertainty in input for which information is collected

VOI and the ARA Framework

- Potential approaches for a case study in the context of the ARA Framework
 - Full quantitative VOI
 - Can be challenging and resource intensive
 - Best reserved for quantitative, in-depth assessments for decisions with substantial impacts
 - Informal, qualitative VOI (as discussed in Science & Decisions)
 - Must establish causal link between research/methods and reduced uncertainty in toxicity AND link between reduced uncertainty and decision-maker's choice
 - Explore how to operationalize this for qualitative assessments or quantitative screening assessments
 - > Are there existing case studies that can serve as foundation for a VOI analysis

IFC

IEC INDUSTRIAL ECONOMICS, INCORPORATED

Eric Ruder, Principal eruder@indecon.com Henry Roman, Principal

hroman@indecon.com\ 617.354.0074