Read Across, SARs and QSARs for Acute Inhalation Toxicity

Tiffany Bredfeldt Carla Kinslow Roberta Grant

Problem Formulation

- Many chemicals have little or no toxicological data
- Concern regarding potential toxicity of chemicals
- Newer legislation regarding chemical safety
- Need to derive toxicity factors for limited toxicity data(LTD) chemicals
- Sustainable methods and reduced animal testing
 - Generic approaches
 - Read across or extrapolations
 - SAR/QSAR

TCEQ Approaches for LTD Chemicals

- Structural Surrogate
- Tiered Approach
- Route-to-Route Extrapolation
- N-L Ratio
 - Calculate LC50 by N-L (NOAEL-LC₅₀ Ratio)
 - Grant et al., 2007

TCEQ Approaches for LTD Chemicals

Time and Resource Requirements

Structure		»			
CAS#	624-83-9	822-06-0	584-84-9	101-68-8	51944-41-3
Name	methyl isocyanate	hexamethylene diisocyanate	2,6 - toluene diisocyanate	4,4' diphenyl methane diisocyanate	4-Cyanodiphenyl- methane diisocyanate
Physiochemical Properties	MW = 57.05 VP = 531 mm Hg 25 C°	MW = 168.22 VP = 0.05 mm Hg 25 C°	MW = 174.15 VP = 0.05 mm Hg 25 C°	MW = 250.25 VP = 0.0003 mm Hg 25 C°	MW=291.26 VP = 0 mm Hg 25 C°
LC50 (rat) 4 h (experimental data)	7 ppm	18.2 ppm	13.9 ppm	16.5-18 ppm	ND
LD50 (rat) (TEST- experimental data)	51.56 mg/kg	737.7mg/kg	5793.93 mg/kg	9191.97 mg/kg	20012.93 mg/kg
TEST Software- Nearest Neighbor (LD50 rat)	381.65 mg/kg	4129.3 mg/kg	5065.71 mg/kg	6291.33 mg/kg	5942.61 mg/kg
TEST Software- Hierarchical Clustering (LD50 rat)	62.02 mg/kg (24-162)	1054.17 mg/kg (810-1371)	3913.86 mg/kg (2471-6200)	10298.44 mg/kg (6478-16370)	18895.13 mg/kg (11684-30558)
RD50 (ppm)	ND	0.35 (1h, mice)	0.39 (1h, mice)	4.8 (1h, mice)	ND

Structure	H O=C H	Ĵ	H H O H-C-C-C H H O	H H H O H-C-C-C-C H H H H	0
CAS#	50-00-0	75-07-0	123-38-6	123-72-8	110-62-3
Name	formaldehyde	acetaldehyde	propionaldehyde	butyraldehyde	valeraldehyde
Physiochemical Properties	MW = 30 VP = 3890 mm Hg	MW = 44 VP = 902 mm Hg	MW = VP = mm Hg	MW = 72 VP = 72 mm Hg	MW=86 VP = 50 mm Hg
LC50 (rat) 4 h (experimental data)	83.5 ppm	13344 ppm	3250 ppm	7500 ppm	ND
LD50 (rat) (TEST- experimental data)	ND (reported: 100 and 2020 mg/kg)	660.76 mg/kg	1409.62 mg/kg	2489.18 mg/kg	4584.11 mg/kg
TEST Software- Nearest Neighbor (LD50 rat)	1594.25 mg/kg	1044.83 mg/kg	134.1 mg/kg	859.12 mg/kg	2116.36 mg/kg
TEST Software- Hierarchical Clustering (LD50 rat)	190.19 mg/kg (23.35-1548.86)	433.38 mg/kg (4.13-45451.06)	458.01 mg/kg (236.60-886.63)	2006.86 mg/kg (1161.46-3467.60)	4584.11 mg/kg (1718.58-3973.22)
RD50 (ppm) 10 minute exposure	3 ppm (rat) 13.8 ppm (rat)	2932 ppm (rat) 4946 ppm (rat)	2078 ppm (rat)	1532 ppm ** 1015 ppm**	1121 ppm** 1190 ppm**

By definition from

a 10-minute exposure.

**REF = http://www.inchem.org/documents/sids/sids/110623.pdf They did not provide durations for RD50

Approaches for LTD Chemicals: Conclusions

- Derivation of a toxicity factor for an LTD chemical is dependent on available resources
- Approaches are designed to be conservative and produce generic toxicity factors that are health protective
- Inhalation can be highly variable
- Oral toxicity trend do not necessarily inform inhalation exposure concerns
- Available QSAR models are not particularly predictive of inhalation toxicity

Area = the calculated molecular planarity, which is an indication for the three dimensional structure

E = measure for the oxidative activation potential by P450 system

Ke = electrophilicity parameter, indicative for directly acting carcinogens

RIVM report 601516.001

SARs/QSARs: Strengths and Limitations

Estimate toxicity

- Select least toxic chemical suitable for industrial use
- Estimate toxicity in case of emergency
- Determine whether emissions would be a potential risk

Direct toxicity testing

- What data is missing? Prioritization?

End point specific

- Does a QSAR based on LD50 or LC50 data inform other endpoints?
- Inhalation endpoints?

Inaccuracy in model

- Oral data not predictive of inhalation toxicity
- Is the model predictive?
- Database used to generate QSAR model:
 - Limited, heterogeneous data points
- Representativeness of database to chemical of concern/interest

Data for QSAR Development

- Based on quality data
 - Systematic evaluation
 - Applicability
 - Heterogeneity
- Well chosen set of chemicals
- Best categorization of data
 - Structural, physicochemical, or MOA?
- What is a well-balanced training set?
 - Range of chemicals
 - High quality studies
 - Validated by comparing experimental data to predicted data
- Uncertainty

Exploratory ATSDR Models

for Inhalation Health Guidance Values

Data Quantity: few

Data Quality: high

ample

poor

Exploratory ATSDR Models

for Acute Exposure Guidelines Levels at 8 hour duration of exposure

ATSDR: Conclusions

- Available inhalation health guidance values can be modeled using QSAR methods
- The quality of QSAR estimates can not be better than the quality of experimental data using which the models were built
- AEGLs/ERPGs represent the most promising source of data for modeling

ATSDR/TCEQ: Future Directions

- Parameters of the models need to be optimized to achieve the best performance
- The chemical domain of model applicability needs to be explored and additional data recruited to improve coverage, as needed
- Confidence and prediction intervals for the estimates need to be derived
- Mode-of-action, species, and uncertainty-factor stratification of the data needs to be explored
- HGV cross-extrapolation dependencies need to be determined, e.g. exposure durations and severity levels

Acknowledgements

TCEQ

Carla Kinslow, Ph.D. Roberta Grant, Ph.D.

ATSDR

Eugene Demchuk, Ph.D. Tracy Tie, Ph.D. Mydzung T. Chu, MSPH

TCEQ Toxicology Division
ATSDR Computational Toxicology Group
EPA (TEST Software)
TERA

Questions/Comments??

SAR PROPERTIES

partition coefficients, size, shape parameters reactivity parameters: energies, 3D structures, functional groups, steric parameters, electronic properties

dioxins

PAHs

PCSs

steroids

CARCINOGENICITY GENOTOXICITY TERATOGENICITY NEUROTOXICITY CYTOTOXICITY

CHEMICAL CLASSES

Alcohols

PAHs halocetic acids chlorofluoromethanes nitrosoamines

RIVM report 601516.001

QSAR Modeling Methods: Choices, Choices, Choices

