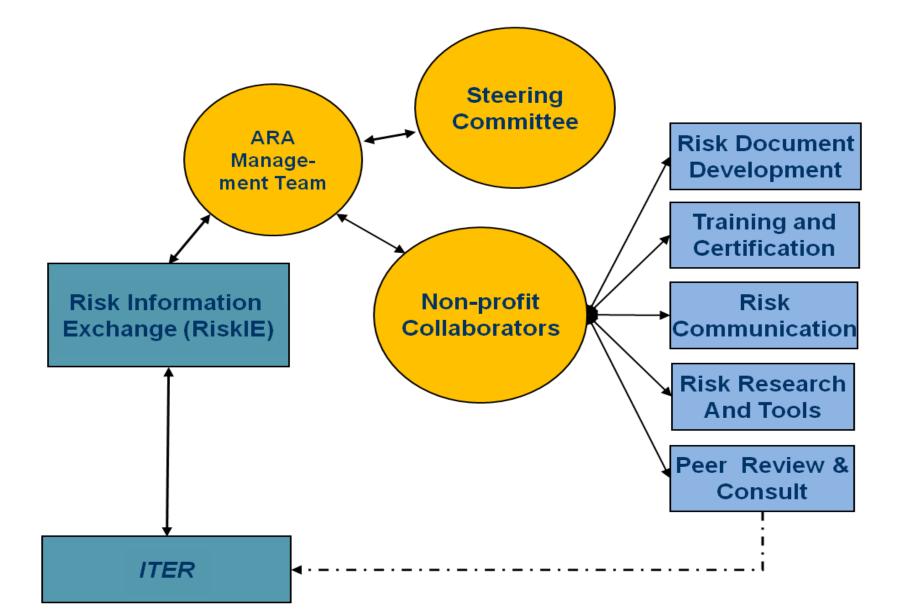
Independent Expert Peer Workshop for the Toxicological Assessment and Development of RfDs for Acetanilide Degradates: A Workshop Using the Alliance For Risk Assessment (ARA) Collaborative Model

Bernard Gadagbui¹, Andrew Maier¹, Michael Dourson¹, <u>Ann Parker¹</u>, Alison Willis¹, John P. Christopher², Lebelle Hicks³ ¹Toxicology Excellence for Risk Assessment, ²Department of Toxic Substances Control, California Environmental Protection Agency, ³Maine Board of Pesticides, Department of Agriculture

2000 LOAEL

Abstract

The workshop was organized to provide a diverse group of independent experts' review of toxicity data to develop RfDs for tertiary-ethanesulfonic acid (ESA) and tertiary-oxanilic acid (OXA) degradates of acetochlor and alachlor. The workshop was interested persons were invited to attend the meeting either in person or via a real-time Internet webcast. Observers were provided the opportunity to provide written or oral technical comments before and during the meeting. TERA compiled data into a series of comprehensive tables which included key data summary tables, critical endpoint summary tables, benchmark dose modeling results, potential RfD summary tables, and copies of key references for the parent chemicals (acetochlor and alachlor) and their degradates (acetochlor ESA, acetochlor OXA, alachlor ESA, and alachlor OXA). The panel assessed the critical effect, appropriate NOAEL, LOAEL, or BMD and recommended uncertainty factors for the above acetanilide degradates using the compiled tables and supporting materials during the 2-day workshop. The panel had an active discussion on the adequacy of the data, critical effects, mode of action, uncertainty factor selection, and derivation of reference values. The panel deliberated and concluded that an RfD for each degradate should be developed for a total of 4 RfDs resulting from the workshop.


This project was conducted under the auspices of the Alliance for Risk Assessment (ARA), a collaboration of stakeholders representing government, academic, industry, environmental and consulting perspectives. As an ARA project, this assessment was vetted for scientific relevance and was conducted by an independent, nonprofit organization, using state-of-the-science chemical risk assessment methods to protect public health. ARA risk assessments are performed in a transparent manner, and made publicly available upon completion.

Alliance for Risk Assessment Collaboration

This project was conducted under the auspices of the Alliance for Risk Assessment (ARA), a collaboration of stakeholders representing government, academic, industry, environmental and consulting perspectives. Given a limited supply of time, resources, and know-how, public health protection is an effort that requires cooperation, organization, and prioritization. The Alliance helps focus these resources to increase the output of risk values.

The ARA works toward this goal by striving for:

- Improved communication among groups
- Transparency in development of products
- Harmonization and consistency in risk assessments
- Shared costs and human resources

ARA Steering Committee

A project submitted to the Alliance, is first reviewed by the ARA Steering Committee, a balance of Federal, State, and Tribal governments, Environmental NGOS and non-profits, and Academia. Current Steering Committee members include:

- Anita Meyer, United States Army Corps of Engineers
- Barbara Harper, Confederated Tribes of the Umatilla Indian Reservation
- Bette Meek, University of Ottawa
- Edward Ohanian, United States Environmental Protection Agency
- Michael Dourson, Toxicology Excellence for Risk Assessment (TERA) • Michael Honevcutt, Texas Commission on Environmental Quality (TCEQ)
- Phil Wexler, National Library of Medicine (NLM)
- Ruthann Rudel, Silent Spring
- William Hayes, State of Indiana

The Steering Committee reviews projects for mission relatedness, impact to the broader risk assessment community, and helps identify relevant work being conducted by groups in their respective sectors.

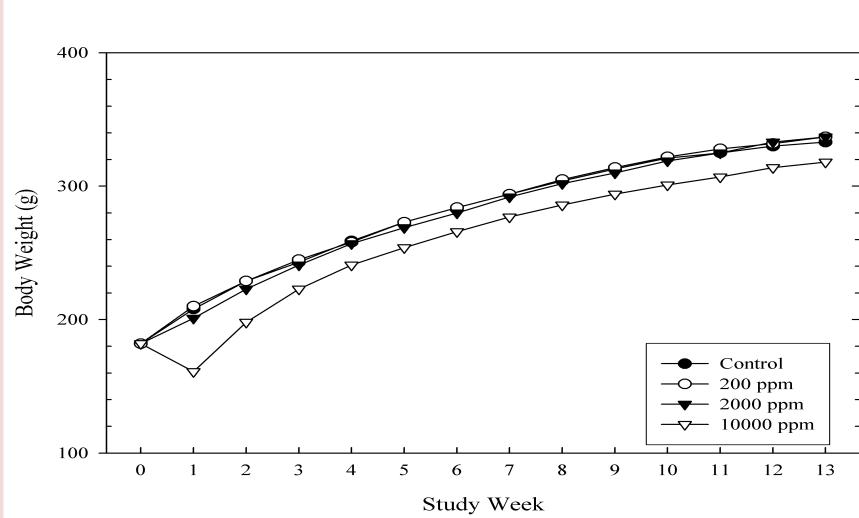
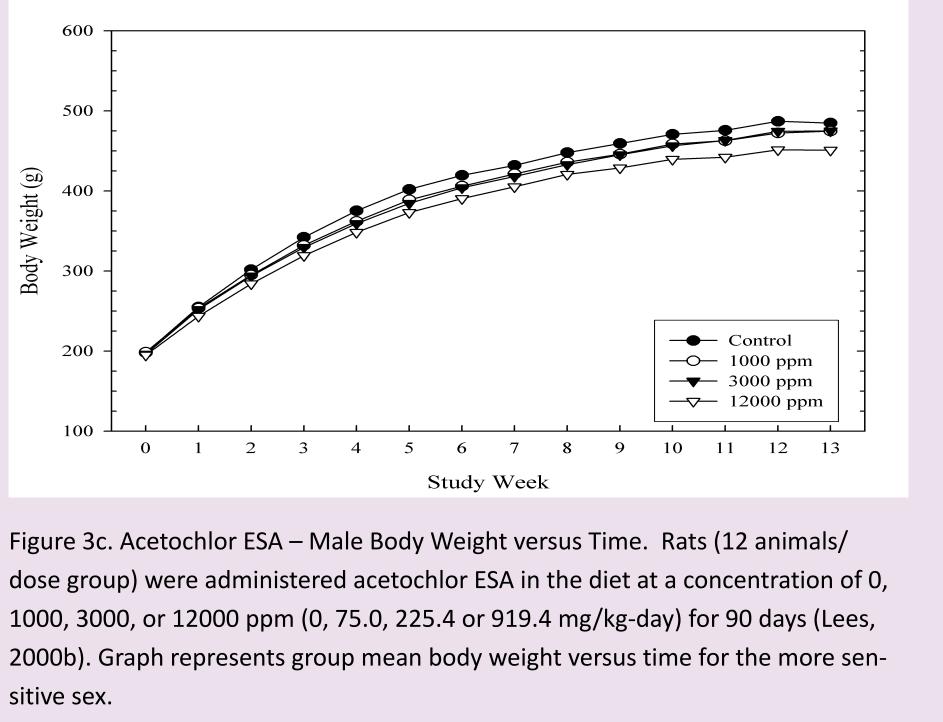
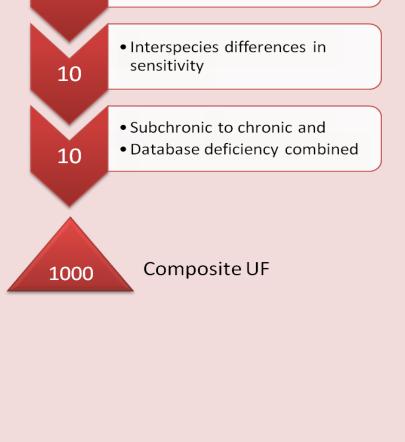



Figure 3a. Alachlor ESA – Male Body Weight versus Time. Rats (10 animals/dose group) were administered alachlor ESA in their drinking water at a concentration of 0, 200, 2000, or 10000 ppm (0, 16, 157, and 896 mg/kg-day) for 91 days (Siglin, 1993; Heydens et al., 1996). Graph represents group mean body weight versus

		Alashlar F	CA Available Studies
Duration of Study	Animal Model Species	Route of Administration	SA Available Studies Dosing Regimen
28 days	Rat	Diet	0, 700, 2000, 7000, and 20,0 ppm [Males – 0, 68, 183, 656, and 2217 mg/kg-day;
			Females – 0, 75, 205, 749, a 2378 mg/kg-day]
90 days	Rat	Diet	0, 3000, 6000, and 12,000 p [Males – 0, 195, 389, and 78 mg/kg-day; Females – 0, 222, 454, and 9 mg/kg-day]
91 days	Rat	Drinking water	0, 200, 2000, and 10,000 pp [Males – 0, 16, 157, and 896 mg/kg-day; Females – 0, 23, 207, and r 1 mg/kg-day]


	Acetochlor ESA Available Studies			
Duration of Study	Animal Model Species	Route of Administration	Dosing Regime	
			0, 3000, 6000, and 12, ppm	
28 days	Rat	Diet	[Males – 0, 370.3, 766 1578.7 mg/kg-day;	
			Females – 0, 374.6, 76 1607.4 mg/kg-day]	
			0, 1000, 3000, and 12, ppm	
90 days	Rat	Diet	[Males – 0, 75.0, 225.4 919.4 mg/kg-day;	
			Females – 85.2, 259.1, 1073.2 mg/kg-day]	

-		
1		
-		
-		
_		
1		
1		
_		
_		
1		
-		
-		

ransformed s greater than toxicity of PA assessments	degradates			
ges a body weight for high dos ity issues RfD	se group			
ty Factor (UF)	Alachlor ESA Key S	Studies and Poir	nts of Departure	e (POD)
lity in sensitivity	Critical Effect(s)	NOAEL mg/kg-day, males / females	LOAEL mg/kg-day, males / females	POE mg/kg
fferences in	No adverse effects on	788 / 926	NA	788

• Degradate not formed in vivo, metabolic pathways are different in soil than in mammals

Alachlor ESA

• Toxicokinetic data

• Key effects

No federal regulations

Poorly absorbed

Rapidly eliminated

Excreted largely un

Toxicity of parent chemical i

Consistent with recent

Mild clinical effects

Slight body weight char

Initial rapid decreases in

• Effects suggest palatabili

Composite Uncertaint

• Low to medium confidence

• Frequently detected in groundwater

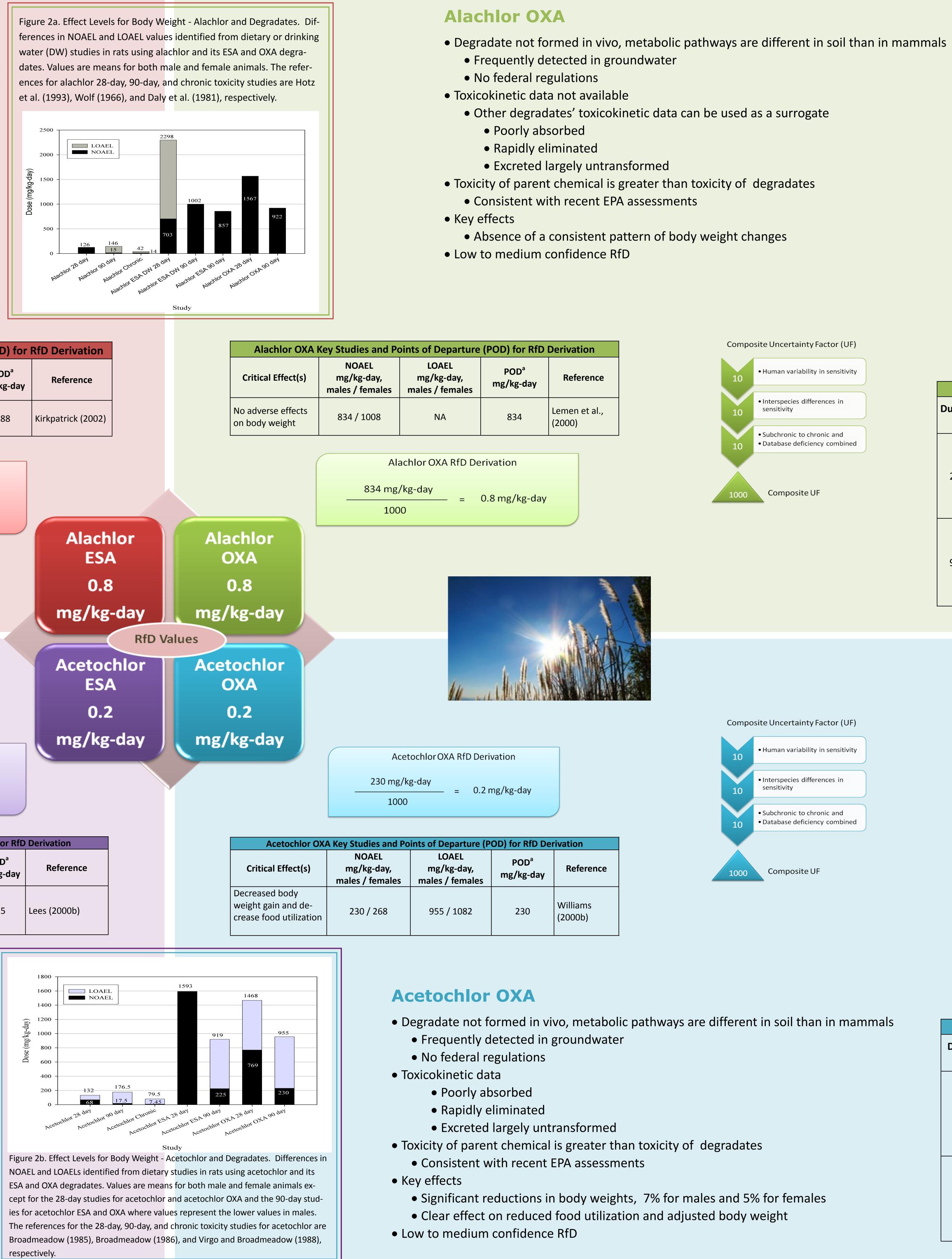
Alachlor ESA Key Studies and Points of Departure (POD) for RfD Derivation					
Critical Effect(s)	NOAEL mg/kg-day, males / females	LOAEL mg/kg-day, males / females	POD ^a mg/kg-day	Reference	
No adverse effects on body weight	788 / 926	NA	788	Kirkpatrick (2002)	

	Alachlor ESA RfD Derivation	
osite UF	788 mg/kg-day = 0.8 mg/kg-day	
	1000 <u>- 1000</u>	
		Alachlor
		ESA
		0.8
		mg/kg-day
	A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNER	RfD V
		Acetochlor
		ESA
		0.2
ainty Factor (UF)		0.2 mg/kg-day
iability in sensitivity	Acetochlor ESA RfD Derivation	mg/kg-uay
s differences in	225 mg/kg-day	
	= 0.2 mg/kg-day	

Compo	site Uncertainty Factor (UF)
10	 Human variability in sensitivity
10	 Interspecies differences in sensitivity
10	Subchronic to chronic andDatabase deficiency combined
1000	Composite UF

Acetochlor ESA Key Studies and Points of Departure (POD) for RfD Derivation					
Critical Effect(s)	NOAEL mg/kg-day, males / females	LOAEL mg/kg-day, males / females	POD ^a mg/kg-day	Reference	
Decreased body weight gain, decreased food consumption, and de- crease food utilization	225 / 259	919 / 1073	225	Lees (2000b)	

• No federal regulations Reference • Toxicokinetic data Poorly absorbed Lees (2000a) • Rapidly eliminated Excreted largely untransformed • Toxicity of parent chemical is greater than toxicity of degradates 2.3, and • Consistent with recent EPA assessments • Key effects Lees (2000b) 4, and


1600 + 1400 + 1000 + 800 -

respectively.

Acetochlor ESA

- Degradate not formed in vivo, metabolic pathways are different in soil than in mammals
- Frequently detected in groundwater

- Decrease in body weight of 10% or greater
- Significantly decreased food utilization in males and females
- 4% change in adjusted body weight in the mid-dose group
- Low to medium confidence RfD

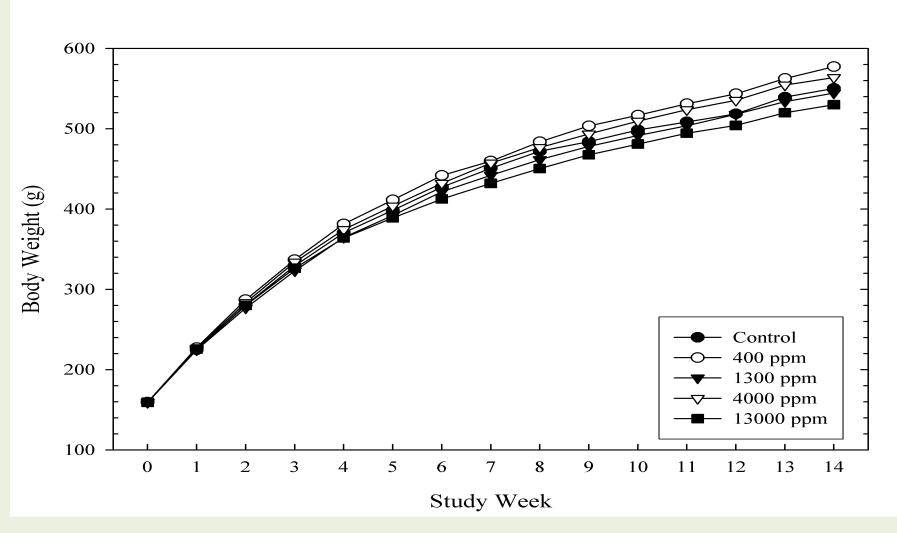


Figure 3b. Alachlor OXA – Male Body Weight versus Time. Rats (10 animals/dose group) were administered alachlor OXA in the diet at a concentration of 0, 400, 1300, 4000, or 13000 ppm (0, 24.9, 83.5, 261.1, and 834.6 mg/kg-day) for 90 days (Lemen et al., 2000). Graph represents group mean body weight versus time for the more sensi-

	Alachlor OXA Available Studies					
ration of Study	Animal Model Species	Route of Administration	Dosing Regimen	Reference		
28 days	Rat	Diet	0, 1000, 10,000, and 20,000 ppm [Males – 0, 74.21, 754.26, and 1539.32 mg/kg-day; Females – 0, 83.35, 829.68, and 1595.26 mg/kg-day]	Stout and Thake (2000)		
90 days	Rat	Diet	0, 400, 1300, 4000, and 13,000 ppm [Males – 24.9, 83.5, 261.1, and 834.6 mg/kg-day; Females – 0, 29.1, 95.4, 290.9, and 1008.3 mg/kg-day	Lemen et al. (2000)		

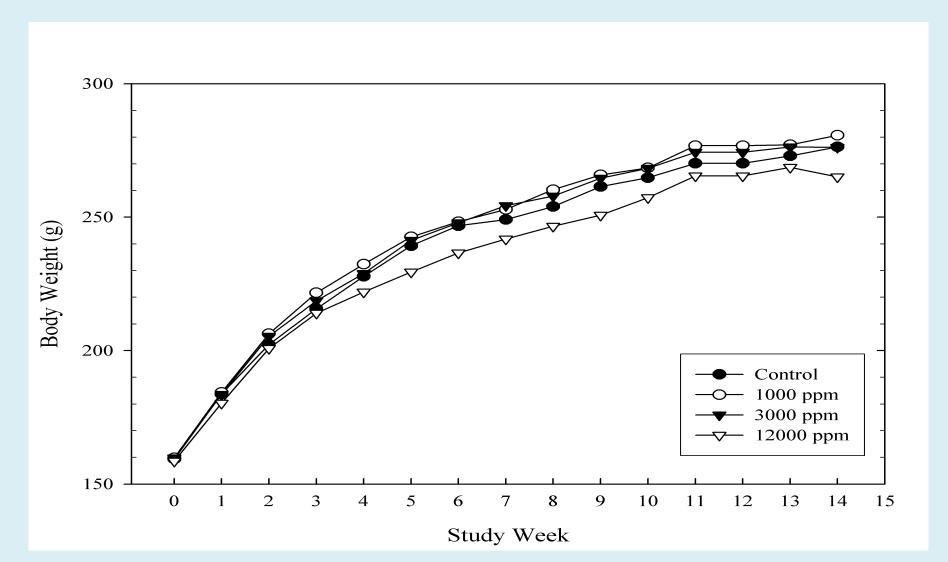
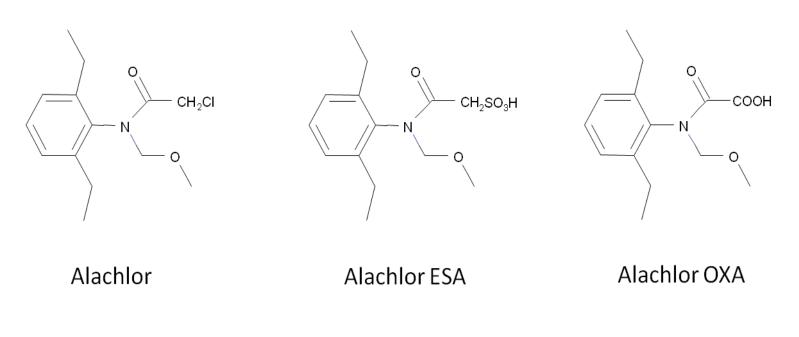



Figure 3d. Acetochlor OXA – Female Body Weight versus Time. Rats (12 animals/ dose group) were administered acetochlor OXA in the diet at a concentration of 0, 1000, 3000, or 12000 ppm (0, 86.5, 268.0, and 1082.7 mg/kg-day) for 90 days (Williams, 2000b). Graph represents group mean body weight versus time for the more sensitive sex.

	Acetochlor OXA Available Studies					
ouration of Study	Animal Model Species	Route of Administration	Dosing Regimen	Reference		
28 days	Rat	Diet	0, 3000, 6000, and 12,000 ppm [Males – 0, 372.6, 768.5, and 1467.9 mg/kg-day; Females – 0, 367.2, 737.3, and 1506.5 mg/kg-day]	Williams (2000a)		
90 days	Rat	Diet	0, 1000, 3000, and 12,000 ppm [Males – 0, 77.2, 230.2, and 955.2 mg/kg-day; Females – 86.5, 268.0, and 1082.7 mg/kg-day]	Williams (2000b)		

Alachlor and Degradate Structures

Acetochlor and Degradate Structures

Expert Panel Workshop

- An expert panel met publicly over two days to develop oral RfDs for the acetanilide degradates.
- The panel was highly experienced in the areas of dose-response assessment and pesticide toxicology.
- Members of the panel
- Dr. Michael Dourson, Toxicology Excellence for Risk Assessment (TFRA)
- Dr. John P. Christopher, Department of Toxic Substances Control, California Environmental Protection Agency
- Dr. Lebelle Hicks, Maine Board of Pesticides, Department of Agricul-
- Dr. Santhini Ramasamy, Office of Water, U.S. Environmental Protection Agency
- Dr. Stephen M. Roberts, Center for Environmental and Human Toxicology, University of Florida
- The panel received a data package for the parent chemicals (acetochlor and alachlor) and their degradates from TERA
- The package included: charge questions, issue descriptions, data summary tables from relevant studies, key findings on the selection of potential critical effects, and benchmark dose modeling results. • Final recommendations were not provided by *TERA*; the panel made
- independent decisions.
- Summary information available at http://www.tera.org/ART/ Degradates/index.html
- Panel concluded that the degradates are less likely to be biologically reactive than the parent chemicals because they:
- 1. Are more polar
- 2. Have relatively low absorption
- 3. Undergo little biotransformation 4. Are rapidly eliminated
- 5. Are not likely to undergo conjugation reactions due to lack of a reac-
- tive dehalogenation site as is present in the parent chemicals, and 6. The presence of oxamic acid or ethane suflonate moieties that prevent the chemicals from being metabolized to a reactive
- quinoneimine like the parent chemicals

Panel Observations

- LOAELs were at least five-times higher than those of the parent chemicals and NOAELs that ranged from five- to 60-times higher for the degradates compared to the parent chemicals.
- The underlying mode of action for decreased body weights is unclear, and relative impacts of different mechanisms were not readily apparent from the available data.
- Observed clinical signs were considered to be consistent with dehydration as an underlying cause for the alachlor ESA drinking water study.
- No treatment-related adverse effects on the thyroid were seen for acetochlor and alachlor degradates.
- Developmental toxicity doesn't appear to be a concern for these degradates, but recognized that lack of data for the untested degradates continues to represent a data gap.
- A composite UF of 1000 for each degradate was considered reasonable, but noted that an argument could be made for an UF of 3000 $(10_A \times 10_H \times 10_{S\&D}).$

Funded by Monsanto and Dow AgroSciences, with in-kind support from US EPA, State of Maine and TERA

