Comparative Dietary Risks: Balancing the Risks and Benefits of Fish Consumption

Results of a Cooperative Agreement between

The U.S. Environmental Protection Agency

and

Toxicology Excellence for Risk Assessment (TERA)

Final
August 1999

Work performed in part under U.S. EPA Cooperative Agreement CX825499-01-0. Although the information in this document has been funded in part by the United States Environmental Protection Agency, this text may not necessarily reflect its views and no official endorsement should be inferred.
Table of Contents

List of Tables and Figures	vi
List of Abbreviations	ix
Foreword	xi
Authors and Contributors	xii
Acknowledgements	xiv
Executive Summary	xv

1. INTRODUCTION

1.1 References

2. HEALTH BENEFITS FROM EATING FISH

2.1 Introduction

2.2 Health Benefits Associated with Fish Consumption

2.2.1 Coronary Heart Disease (CHD) and Myocardial Infarction (MI)

- **2.2.1.1** Kromhout, Bosschieter and Coulander, 1985. "The Zutphen Study" (1) 2-9
- **2.2.1.2** Kromhout, Feskens and Bowles, 1995. General practice patients in Rotterdam, the Netherlands. (2) .. 2-9
- **2.2.1.3** Norell, Ahlbom, Feychting and, Pedersen, 1986. "Swedish Twins" (3) 2-9
- **2.2.1.4** Vollset, Heuch and, Bjelke, 1985. “Norway Postal Dietary Survey (4) 2-10
- **2.2.1.5** Curb and Reed, 1985. “Honolulu Heart Program” (5) 2-10
- **2.2.1.6** Fraser, Sabate, Beeson and, Strahan, 1992. “The Adventist Health Study” (6) 2-11
- **2.2.1.7** Morris, Manson, Rosner, Buring, Willett and Hennekens, 1995. “The US Physicians’ Health Study: 4 years” (7) .. 2-11
- **2.2.1.8** Albert, Hennekens, O’Donnell, Ajani, Carey, Willett, Ruskin and Manson, 1998. “The US Physicians’ Health Study: 12 years” (8) 2-12
- **2.2.1.9** Ascherio, Rimm, Stampfer, Biovannucci and Willett, 1995. “The Health Professionals Follow-Up Survey” (9) ... 2-12
- **2.2.1.10** Gramenzi, Gentile, Fasoli, Negri, Parazzine and La Vecchia, 1990 (10) 2-13
- **2.2.1.11** Siscovick et al., 1995. Case-control Study in Seattle and King County, Washington. (11) ... 2-13
- **2.2.1.12** Burr, Gilbert, Holliday, Elwood, Fehily, Rogers, Sweetnam and Deadman, 1989. “The Diet and Reinfarction Trial (DART)” (12) 2-13
- **2.2.1.13** Daviglus et al., 1997. “The Western Electric Study” (13) 2-14
- **2.2.1.14** Conclusions and Weight of Evidence for an Association between Coronary Heart Disease and Fish Consumption ... 2-14

2.2.2 Studies of Other Possible Health Effects of Fish Consumption

- **2.2.2.1** Smoking-Related Chronic Obstructive Pulmonary Disease (COPD) 2-16
- **2.2.2.2** Lung Damage from Smoking ... 2-19
- **2.2.2.3** Rheumatoid Arthritis ... 2-19
- **2.2.2.4** Childhood Asthma .. 2-20
- **2.2.2.5** Plaque Psoriasis .. 2-20
- **2.2.2.6** Colon Cancer .. 2-20
- **2.2.2.7** Gastrointestinal Disease .. 2-20
Cooperative Agreement with U.S. EPA on Comparative Dietary Risk

2.2.2.8 Dyslipidemia in Non-Insulin-Dependent Diabetes Mellitus.................................2-21
2.3 Antioxidant Levels ..2-21
2.4 Health Benefits During Pregnancy, Lactation and Infancy ..2-21
2.5 Health Benefits for Children Consuming Fish ...2-22
2.6 Conclusions and Research Needs ...2-23
2.7 References ..2-24

3 NUTRITIONAL ASPECTS OF FISH COMPARED WITH OTHER PROTEIN SOURCES ..3-1
3.1 Introduction ...3-1
3.2 Per Capita Consumption of Fish (Finfish and Shellfish) ...3-1
3.3 Nutritional Content and Contamination Levels for Fish and Other Protein Sources3-3
 3.3.1 Selection of Nutrients, Foods and Contaminants for Tables 3-1 and 3-23-3
 3.3.2 Substituting Other Foods for Fish: Effects on Macronutrient Profiles3-4
3.4 Fish as a Protein Source ...3-5
 3.4.1 Protein Quality ..3-5
 3.4.2 Fish Protein vs. Other Dietary Protein Sources ...3-5
3.5 Fish as a Source of Essential Fatty Acids ..3-6
3.6 Cholesterol ..3-7
3.7 Vitamins ...3-7
 3.7.1 Vitamins B3, B6, and B12 ...3-7
 3.7.2 Vitamin A ..3-8
 3.7.3 Vitamin D ...3-9
3.8 Minerals..3-9
 3.8.1 Calcium ..3-9
 3.8.2 Iron ..3-10
 3.8.3 Zinc ..3-10
 3.8.4 Selenium ...3-11
3.9 Effects of Food Preparation Methods on Nutritional Benefits3-11
3.10 Effects of Food Preparation Methods on Contaminant Levels3-12
3.11 Conclusions and Research Needs ..3-12
3.12 References ..3-22

4 HEALTH RISKS FROM EATING CONTAMINATED FISH ...4-1
4.1 Introduction ..4-1
4.2 Calculating Risk above the Reference Dose for Noncancer Endpoints4-2
 4.2.1 EPA/ChemRisk Model ...4-3
 4.2.2 Other Approaches to Calculate Risk above the RfD ...4-5
4.3 Dose Response Information for the Six Selected Target Substances4-6
 4.3.1 DDT and Metabolites (DDE and DDD) ..4-6
 4.3.2 Methylmercury ..4-7
 4.3.3 Dioxin ..4-10
 4.3.4 Polychlorinated Biphenyls (PCBs) ...4-11
 4.3.5 Chlordane ..4-13
 4.3.6 Chlorpyrifos ...4-16
4.4 Multigenerational Study of Great Lakes Salmon Fed to Rats4-17
Cooperative Agreement with U.S. EPA on Comparative Dietary Risk

6.6.1.5 Discussion .. 6-48
6.6.1.6 A Method for Verifying Fish Consumption Estimates ..6-51
6.6.2 Vietnamese Immigrant Women Consuming Lake Ontario Sportfish6-52
 6.6.2.1 Background ..6-52
 6.6.2.2 Summary of Existing Data ..6-53
 6.6.2.2.1 Descriptive Data ..6-53
 6.6.2.2.2 Biochemical Data ...6-54
 6.6.2.3 Exposure Assessment ...6-55
 6.6.2.4 Calculation of FCI ..6-56
 6.6.2.4.1 Salmon from Credit River ...6-56
 6.6.2.4.2 Rockbass and Smallmouth Bass from the Niagara River6-60
 6.6.2.5 Discussion ..6-60
6.7 Overall Conclusions and Research Needs ..6-61
6.8 References ..6-69

7 USING AND COMMUNICATING THE COMPARATIVE DIETARY RISK FRAMEWORK .. 7-1
7.1 Overview of Risk Communication as a Process ... 7-1
7.2 Designing, Implementing, and Evaluating a Communication Program for the Comparative Dietary Risk Framework .. 7-2
 7.2.1 Problem Analysis ... 7-5
 7.2.2 Audience Identification and Needs Assessment .. 7-6
 7.2.3 Communication Program Strategy Design and Implementation 7-7
 7.2.4 Evaluation .. 7-10
7.3 Research Needs and Further Work ... 7-10
7.4 References ... 7-11

8 CONCLUSIONS AND RESEARCH NEEDS ... 8-1
8.1 Overall Conclusions and Research Needs .. 8-1
8.2 Chapter 2 .. 8-1
8.3 Chapter 3 .. 8-2
8.4 Chapter 4 .. 8-3
8.5 Chapter 5 .. 8-4
8.6 Chapter 6 .. 8-5
8.7 Chapter 7 .. 8-7
8.8 Final Comment ... 8-8
8.9 References ... 8-8
List of Tables and Figures

List of Tables

Table 2-1. Studies of Fish Consumption and Coronary Heart Disease (CHD).......................... 2-3
Table 2-2. Studies of Fish Consumption and Other Endpoints ... 2-17
Table 3-3. Percent of energy (calories) from macronutrients based upon one
day's diet which included a 150 gram serving of fish, chicken or
hotdogs.¹ (calculations based on Candat, 1994) .. 3-4
Table 3-1 Nutrition Values and Contaminant Levels in Fish - values for
100 g edible portion.. 3-14
Table 3-2 Nutrition Values and Contaminant Levels in Other Protein
Sources - values for 100 g edible portion .. 3-18
Table 4-1. Frequency of residue presence in fish, and the number of states
that have issued advisories for the chosen chemicals. ... 4-2
Table 4-2: Methylmercury Responses at Multiples of the Reference Dose 4-10
Table 4-3: Chlordane Responses at Multiples of the Reference Dose .. 4-16
Table 6-1. Relative Risks for Various Endpoints listed in Table 2-1 6-4
Table 6-2. Severity Ranking of Effects and Benefits and Resulting Multipliers
for the Framework ... 6-7
Table 6-3. Caveats with the Use of Severity Schemes Shown in Table 6-2 for
Adjusting Quantitative Information on Risks and Benefits .. 6-8
Table 6-4. Input Parameters To Estimate Benefits .. 6-22
Table 6-5. Inputs Parameters To Estimate Risks .. 6-23
Table 6-6. Calculation of estimated daily doses using total hair Hg data from
Fleming et al. (1995) ... 6-45
Table 6-7. Dose-response estimates for methylmercury (Price et al. 1997) 6-46
Table 6-8. Dose (mg/kg-day) as a Function of Fish Consumption Rate and
RfDs for Contaminants from EPA (1999) .. 6-57
Table 6-9. Hazard Indices Assuming Additive Toxicity for Salmon taken from the
Credit River. Calculations for Individual, all Compounds, and by Target
Organ or Critical Effect. HI > 1 Indicates Possibility of Toxic Effect 6-57
Table 6-10. Cancer Incidence, Cancer Risk (Including Severity Factor), Benefit
(INCLUDING Magnitude) and FCI for Salmon Taken from the Credit River. 6-58
Table 6-11. Dose (mg/kg-day) of chemicals detected in smallmouth bass taken
from the Niagara River as a function of fish consumption (g/day) 6-59
Table 6-12 Dose (mg/kg-day) of chemicals detected in rockbass taken from the
Niagara River as a function of fish consumption (g/day) .. 6-59
Table 6-13. FCI at 38 g/day for Salmon Rockbass and Smallmouth Bass 6-61
Table 6-14. Hazard Index for PCBs at 38 g/day ... 6-61
List of Figures

Figure 4-1. Dose-Response Curves for Methylmercury ... 4-9
Figure 4-2. Dose-Response Curves for Chlordane.. 4-15
Figure 6-1. Disability as a Function of Protein Intake ... 6-10
Figure 6-2. Disability as a Function of Target Organ Impairment.. 6-11
Figure 6-3. Relative risk as a function of intake rate and source of protein 6-12
Figure 6-4. Relative risk of benefits and toxicity as a function of different amounts of fish consumed assuming contamination with 2.1 ppm methylmercury and 12 ppm chlordane.. 6-14
Figure 6-5. Health Scale as a Function of Fish Consumption Rate ... 6-21
Figure 6-6. Low Concentration Carcinogen... 6-29
Figure 6-7. High Concentration Carcinogen ... 6-29
Figure 6-8. Low Concentration Non-Cancer... 6-30
Figure 6-9. High Concentration Non-Cancer... 6-30
Figure 6-10. Low Concentration Cancer and Non-Cancer.. 6-31
Figure 6-11. High Concentration Cancer and Non-Cancer.. 6-31
Figure 6-12. Low Concentration Non-Bioaccumulative... 6-35
Figure 6-13. High Concentration Non-Bioaccumulative ... 6-35
Figure 6-14. Low Concentration Bioaccumulative ... 6-35
Figure 6-15. High Concentration Bioaccumulative ... 6-35
Figure 6-16. Change in FCI as more chemicals are evaluated for health risk in fish Figure 6-16 ... 6-36
Figure 6-17. Non-critical effects begin to manifest themselves at doses much greater than the critical effect.. 6-37
Figure 6-18. Non-critical effects manifested at doses similar to critical effect but dose response curves are shallower .. 6-38
Figure 6-19. Non-critical effects begin at doses similar to the critical effect and their dose response curves are ~ similar.. 6-39
Figure 6-20. FCI changes when cultural benefits of fish consumption are added............... 6-42
Figure 6-21a Estimated Risk, Benefit, and FCI for Mercury Contaminated Fish from the Everglades for the General Population... 6-49
Figure 6-21b Estimated Risk to the Fetus As a Function of Everglades Fish Consumption ... 6-50
Figure 6-22. Risk, Benefit, and FCI as a Function of Consumption of Salmon from the Credit River ... 6-62
Figure 6-23. Total Cancer Risk and Individual Components for Salmon Taken from the Credit River ... 6-63
Figure 6-24 Hypothetical Risk, Benefit, and FCI Assuming that the Shape of the Noncancer Dose-Response Curve for PCBs is the Same as that for Methylmercury for Salmon from the Credit River.. 6-64
Figure 6-25. Risk, Benefit, and FCI as a Function of Niagara River Rockbass Consumption ... 6-65
Figure 6-26. Risk, Benefit, and FCI as a Function of Niagara River Smallmouth Bass Consumption ... 6-66
Figure 7-1. The risk communication process, adapted from Velicer and Knuth (1994).
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Arachidonic Acid</td>
</tr>
<tr>
<td>ADI</td>
<td>Allowable Daily Intake</td>
</tr>
<tr>
<td>AFS</td>
<td>American Fisheries Society</td>
</tr>
<tr>
<td>AOC</td>
<td>Areas of Concern</td>
</tr>
<tr>
<td>ARIC</td>
<td>Arteriosclerosis Risk in Communities</td>
</tr>
<tr>
<td>AR</td>
<td>Attributable Risk</td>
</tr>
<tr>
<td>ATSDR</td>
<td>Agency for Toxic Substances and Disease Registry</td>
</tr>
<tr>
<td>ChE</td>
<td>Cholinesterase</td>
</tr>
<tr>
<td>CSF</td>
<td>Cancer Slope Factor</td>
</tr>
<tr>
<td>B<sub>i</sub></td>
<td>Background incidence of health endpoint i</td>
</tr>
<tr>
<td>BMD</td>
<td>Benchmark Dose</td>
</tr>
<tr>
<td>BMDL</td>
<td>Lower confidence limit on a benchmark dose</td>
</tr>
<tr>
<td>BMDL<sub>10</sub></td>
<td>Lower bound on dose corresponding to 10% risk (used to be explicit that the lower bound and not the maximum likelihood estimate is being used)</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BMR</td>
<td>Benchmark Response</td>
</tr>
<tr>
<td>BW</td>
<td>Body Weight</td>
</tr>
<tr>
<td>CHD</td>
<td>Coronary Heart Disease</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic Obstructive Pulmonary Disease</td>
</tr>
<tr>
<td>CSF</td>
<td>Cancer Slope Factor</td>
</tr>
<tr>
<td>CSFII</td>
<td>Continuing Survey of Food Intakes by Individuals</td>
</tr>
<tr>
<td>DHA</td>
<td>Docosahexanoic Acid</td>
</tr>
<tr>
<td>DL</td>
<td>Detection Limit</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>ED</td>
<td>Effective Dose</td>
</tr>
<tr>
<td>EPA</td>
<td>Eicosapentanoic Acid</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>FA</td>
<td>Fatty Acid</td>
</tr>
<tr>
<td>Trans-FA</td>
<td>Trans-fatty Acid</td>
</tr>
<tr>
<td>FCI</td>
<td>Fish Consumption Index</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FEL</td>
<td>Frank Effect Level</td>
</tr>
<tr>
<td>FEV</td>
<td>Forced Expiratory Volume</td>
</tr>
<tr>
<td>FVC</td>
<td>Forced Vital Capacity</td>
</tr>
<tr>
<td>HDL</td>
<td>High Density Lipoprotein</td>
</tr>
<tr>
<td>HHP</td>
<td>Honolulu Heart Program</td>
</tr>
<tr>
<td>HI</td>
<td>Hazard Index</td>
</tr>
<tr>
<td>IRIS</td>
<td>Integrated Risk Information System</td>
</tr>
<tr>
<td>LDL</td>
<td>Low Density Lipoprotein</td>
</tr>
<tr>
<td>LOAEL</td>
<td>Lowest Observed Adverse Effect Level</td>
</tr>
<tr>
<td>MeHg</td>
<td>Methylmercury</td>
</tr>
<tr>
<td>MI</td>
<td>Myocardial Infarction</td>
</tr>
<tr>
<td>MOE</td>
<td>Margin of Exposure</td>
</tr>
</tbody>
</table>
Cooperative Agreement with U.S. EPA on Comparative Dietary Risk

MRL Minimal Risk Level
NEJM New England Journal of Medicine
NIDDM Non-insulin-dependent diabetes mellitus
NTP National Toxicology Program
NOAEL No Observed Adverse Effect Level
NOEL No Observed Effect Level
PAH(s) Polyaromatic Hydrocarbon(s)
PCB(s) Polychlorinated Biphenyl(s)
PCDD(s) Polychlorinated dibenzodioxin(s)
PCDF(s) Polychlorinated dibenzofurans(s)
ppm Parts Per Million
PUFA Polyunsaturated Fatty Acid
QALY Quality Adjusted Life Years
R Risk
RQ Reportable Quantity
RR Relative Risk
RRi Relative Risk of health endpoint i at a given consumption rate
RfC Reference Concentration
RfD Reference Dose
RSD Risk Specific Dose
S Severity
Si Severity of health endpoint i
SFA Saturated Fatty Acid
UF Uncertainty factor
WHO World Health Organization
Foreword

This document is the result of a cooperative agreement between Toxicology Excellence for Risk Assessment (TERA) and the U.S. Environmental Protection Agency (U.S. EPA), Office of Water. TERA formed a Research Team of scientists to collectively develop knowledge of problems regarding assessing health risks and benefits posed by consumption of chemically contaminated fish and determine a method to evaluate both risks and benefits together. The final outcome of this cooperative agreement is this report, which summarizes what is known about health risks from consumption of contaminated fish, health benefits from consuming fish, and general problems associated with comparisons of these risks and benefits. Moreover, this report proposes a framework for comparing the health benefits and health risks in a quantitative fashion.

The results of this research are intended to lead to a better understanding of the relative health risks and benefits of consumption of contaminated fish. The authors of this report anticipate that the proposed framework will be used by local risk managers and fish consumers to further evaluate health benefits, health risks and other dietary information on contaminated fish. Furthermore, states and tribes may use the results of this or subsequent work in assessing local conditions and developing policies towards site-specific fish consumption advisories. An Advisory Committee of state, local, tribal, industry and environmental scientists provided input during the course of this research on the design and use of the framework. This Advisory Committee reviewed a draft of this document and suggested improvements.

Funding for this work was provided by the U.S. EPA under Cooperative Agreement number CX825499-01-0 and by TERA. Mr. Jeffrey Bigler of the U.S. EPA Office of Water was the Project Officer. Although the information in this document has been funded in large part by the United States Environmental Protection Agency, it does not necessarily reflect the views of the Agency and no official endorsement should be inferred.

We would welcome your comments on this document. Please contact Toxicology Excellence for Risk Assessment (TERA) at 513-542-7475 (RISK), or tera@tera.org (e-mail).
Authors and Contributors

To conduct this research and write this document, Toxicology Excellence for Risk Assessment (TERA) formed a Research Team of scientists from a number of key disciplines, including risk assessment, nutrition science, environmental anthropology, medicine and public health, risk communication and toxicology. The Research Team members each contributed knowledge and inspiration from their respective fields to write or contribute to specific chapters, as well as collaborate on the quantitative framework outline.

Authors and Research Team

Paul D. Anderson, Ph.D. (Chapter 6)
Ogden Environmental and Energy Services, Westford, MA

Daniel Cartledge, Ph.D. (Chapter 5)
Monmouth College, Department of Sociology and Anthropology, Monmouth, IL

Martha Daviglus, M.D. (Chapter 2)
Northwestern University Medical School, Department of Preventive Medicine, Chicago, IL

Michael Dourson, Ph.D. (Chapters 4, 6 and 8)
Toxicology Excellence for Risk Assessment, Cincinnati, OH

Barbara A. Knuth, Ph.D. (Chapter 7)
Cornell University, Department of Natural Resources, Ithaca, NY

Elaine Murkin, M.Sc., (Chapters 2, 3 and 6)
University of Guelph, Division of Applied Human Nutrition, Guelph, Ontario, Canada

Jacqueline Patterson, M.En. (Chapters 1 and 8)
Toxicology Excellence for Risk Assessment, Cincinnati, OH

Paul Price, M.S. (Chapter 4)
Ogden Environmental and Energy Services, Portland, ME

Judy Sheeshka, Ph.D. (Chapters 2, 3 and 6)
University of Guelph, Division of Applied Human Nutrition, Guelph, Ontario, Canada

Jerry Stober, Ph.D.
U.S. Environmental Protection Agency EPA, Athens, GA

Jason Unrine, B.S. (Chapter 4 and 6)
Toxicology Excellence for Risk Assessment, Cincinnati, OH
Contributors (Advisory Committee)

An Advisory Committee was formed in 1997 at the beginning of this project to provide advice and assistance to TERA and the Research Team by identifying target and countervailing risks, suggesting case study ideas and providing comments on the practicality and usefulness of the framework. The Advisory Committee met in February 1999 to review a draft of this document. The Committee members provided many helpful and constructive suggestions for revisions; many of which are reflected in the final document. TERA and the Research Team greatly appreciated the input and suggestions of the Advisory Committee. Their comments have significantly strengthened this document.

Henry Anderson, M.D.
Bureau of Public Health, State of Wisconsin, Madison, Wisconsin

Michael Bolger, Ph.D.
Food and Drug Administration, Washington, D.C.

J. Milton Clark, Ph.D.
U.S. Environmental Protection Agency, Region 5, Chicago, Illinois

John Festa, Ph.D.
American Forestry Products Association, Washington, D.C.

Kory Groetsch, M.S.
Great Lakes Indian Fish & Wildlife Commission, Odanah, Wisconsin

Neil Kmiecik, M.S.
Great Lakes Indian Fish & Wildlife Commission, Odanah, Wisconsin

Amy Kyle, Ph.D.
School of Public Health, University of California
& Natural Resources Defense Council, San Francisco, California

Randall Manning, Ph.D.
Department of Natural Resources, State of Georgia, Athens, Georgia

Gerald Pollock, Ph.D.
California Environmental Protection Agency, Sacramento, California

Edward Ohanian, Ph.D.
U.S. Environmental Protection Agency, Washington, D.C.

Andy Smith, Ph.D.
Bureau of Health, State of Maine, Augusta, Maine
Acknowledgements

It was necessary to understand the perspectives of multiple disciplines in order to create this framework and document. We appreciate the many contributions of our colleagues. In particular, our Advisory Committee (listed elsewhere) was invaluable in providing advice and suggestions. We also appreciate the scientific contributions of Dr. Barbara Harper, Mr. Stuart Harris, and Dr. Rafael Ponce who were interested in this project and shared their ideas with us.

A number of TERA staff assisted in this endeavor. Ms. Joan Dollarhide provided initial thinking and scoping of the project and Dr. Lynne Haber provided scientific review and input of the final document. We thank both of them. We also appreciate the patience and perseverance of Ms. Meg Poehlmann and Ms. Caitlin McArleton in finalizing the text and references.

Finally, we thank our EPA Project Officer, Mr. Jeffrey Bigler. His vision for the project, especially as it fits with other EPA work, was most helpful in motivating us beyond our individual disciplines towards an integrated and interdisciplinary product.
Executive Summary

A comparative dietary risk framework (hereafter referred to as the framework) has been developed under this Cooperative Agreement for comparing the possible health risks of consuming contaminated fish, while considering the potential health benefits lost by not eating fish. The result of using the framework is a crude quantitative representation of the risk and benefit associated with eating contaminated fish. The output of the framework is referred to as the fish consumption index (FCI).

The FCI is an estimate of relative risk. It is not an estimate of absolute risk. In other words, it does not provide users of the framework with an estimate of their increased or decreased incidence of a particular health outcome. It simply provides a mechanism by which users can weigh the possible health risks versus the possible health benefits of eating contaminated fish. Cultural benefits of catching and eating fish (or detriments of not being able to fish or consume fish) may also be considered, however the current version of the framework does not attempt to quantify these benefits.

Before considering risks and benefits, a determination should be made that alternatives to contaminated fish are not available. Perhaps lower contaminated fish sources are available sufficient to maintain the individual’s desired level of fish consumption. Situations where the weighing of benefits and risks may be necessary may include subsistence populations where alternatives to contaminated locally caught fish are limited.

The framework is designed to provide information for a range of fish consumption rates, allowing a user to roughly estimate the range of consumption rates at which people may have a net benefit, a net risk, and the consumption rate at which no net change in the health index would be likely. However, the suggested framework has a number of significant data gaps. These gaps are sufficiently large so as to prevent any definitive conclusions. Moreover, these gaps prevent making any overall recommendations on the existing fish consumption advisory programs of the U.S. or other countries. Further study is needed to confirm and extend the preliminary findings discussed in this document.

Use of the framework and FCI does not imply the proper choice is simply achieving a situation in which the net risks and benefits are zero. Nor is it a justification for accepting fish consumption risks as long as there is a net benefit. Rather, the framework helps make the risks and benefits transparent. Decisions about acceptable risks and distribution of risks and benefits throughout society should be made collectively by the communities affected, and are not a focus of this text. That the FCI may demonstrate cases in which fish consumption benefits may outweigh the risks is not a license to pollute. Rather, society must determine policy about long-term goals for minimizing environmental pollution based on a range of ethical, economic, social, and other criteria. Again, the purpose of this text is to discuss the underlying scientific issues associated with comparing the risks and benefits of fish consumption. It does not address the social, economic or ethical considerations.

There is some evidence for an association between decreased risk of coronary heart disease (CHD) or myocardial infarction (MI) and consumption of small amounts of fish, including
mainly lean (non-fatty) fish. In addition, other health endpoints have been examined and some research suggests that eating fish may be associated with reduced incidences or severity of a number of other endpoints. This evidence, along with the superior nutritional value of fish, is strong enough that public health officials routinely encourage the public to eat more fish.

Consuming uncontaminated fish (or at least fish that are smaller, younger, or in general less contaminated) may provide health benefits as mentioned above, but without the potential health risks associated with contamination. The eating of such “cleaner” fish rather than more contaminated fish, would maximize the net benefit of fish consumption, as we show specifically for low versus high concentrations of chemicals in fish, for those chemicals that either bioaccumulate or not, or for fish contaminated with more that one chemical.

This framework is an initial attempt to evaluate risks and benefits (qualitatively and quantitatively) on a common scale. Constructing this framework has identified numerous areas that need further research and development. Two needs seem paramount. First, better estimations of benefits are needed for the general population and its sensitive subgroups. Although information in this text is highly suggestive of the protective effects of eating fish and allows some quantification, more definitive work is needed to support or modify our chosen quantitative values. Second, better risk information is needed on the chemicals that commonly contaminate fish. Sufficient knowledge on the toxicity of most of these pollutants exists, on which noncancer risks could be quantified. Both sets of information are essential for this framework to be most effective.