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1.0 Description of Project 
 

This project has several purposes including the review of existing physiologically-
based pharmacokinetic (PBPK) models for benzene, the use of PBPK models to facilitate the 
interpretation of the human biomonitoring data for benzene and, finally, the estimation of 
human blood and milk concentrations that could correlate with measured or modeled 
exposure data for benzene.  
 
2.0 Literature Review for Human Pharmacokinetics and Biomonitoring of Benzene 
 
2.1 Literature Review of Available PBPK Models  
  

The assessment of information regarding human data on inhalation pharmacokinetics 
of benzene was performed using TOXLINE via National Library of Medicine, occupational 
health and biological monitoring literature as well as the contractor’s knowledge of published 
work in this area.   The most widely acknowledged and cited work on human PBPK 
modeling of benzene is that of Travis et al. (1990).   The contractor has used this model 
previously for developing risk assessments, in a publication that was recently selected as the 
best paper in Toxicological Sciences, by the Society of Toxicology.  The Travis et al. (1990) 
publication represents original work reporting the construction of a PBPK model for benzene 
in humans exposed by inhalation.  The chemical-specific parameters of this PBPK model are 
given below: 
 
Benzene partition coefficients 
 

Blood:air       7.4 
Liver:air       11.0 
Fat:air        406.0 
Bone marrow:air      120.0 
Richly perfused tissues:air     11.0 
Poorly perfused tissues:air     15.0 

 
Benzene metabolism constants 
 
 Liver Vmax (mg/hr)      29.04 
 Liver Km (mg/L)      0.35 
 Bone marrow Vmax (mg/hr)     1.16 
 Bone marrow Km (mg/L)     0.35 
 
Two other efforts of human PBPK modeling that are worth noting are those by Sherwood et 
al. (See Sherwood and Sinclair 1999; Sinclair et al. 1999), and by Bois et al. (See Watanabe 
et al. 1994; Bois et al. 1996).  In the Sherwood et al. papers, the parameters of the model are 
not specified and as such the validity of the modeling approach is difficult to evaluate.  
Regarding Bois et al.’s work, their publications report the application of simple Monte Carlo 
and Markov-Chain Monte Carlo approaches for simulating the kinetics of benzene in 
populations.  Given the complexity of these approaches, current state of Markov-Cain Monte 
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Carlo approach in risk assessment arena and the questionable nature of the parameter 
specification in these studies (which was based either on incomplete knowledge or on 
presumed distributions), these models were not further considered for the VCCEP PBPK 
project.  
 

In addition to the PBPK models identified in the literature review, several controlled 
human volunteer studies on benzene (see Table 2.1) were identified in which benzene blood 
concentrations were measured following inhalation exposures.  These data are potentially 
useful for two purposes: (1) for validating human PBPK models, and (2) to examine the 
relationship between blood concentration and exposure concentration in exposed individuals.   
 

Table 2.1 Controlled human volunteer studies of Benzene pharmacokinetics 
 

Exposure Concentration Exposure -Sampling 
Duration 

Reference 

10 & 1.7 ppm 240- 1400 min Pekari et al. (1992) 
0.08 mg/L (25 ppm) 120 – 300 min Sato et al. (1975) 
0.08 mg/L (25 ppm) 120 – 300 min Sato et al. (1974) 
0.08 mg/L (25 ppm) 480 – 2040 min Teisinger and Fiserova 

-Bergerova(1955) 
0.313 mg/L (100 ppm) 90 – 390 min Srbova et al. (1950) 
 
 
2.2 Literature Review of Available Human Biomonitoring Data for Benzene 
 

Using a similar approach to the assessment of available benzene PBPK models, a 
search for information regarding human biomonitoring data on benzene (limited to blood 
concentration measurements) was performed using TOXLINE via National Library of 
Medicine, occupational health and biological monitoring literature as well as the contractor’s 
knowledge of published work in this area.  A careful evaluation of all of the literature was 
then done in order to select the relevant data for interpretation of human biomonitoring data. 
 

Table 2.2 summarizes, in order of publication date, the existing data on benzene 
blood concentrations reported in human populations.  Whereas some of the publications 
report data on environmental concentrations as well, most of them only report the 
biomonitoring data without any reference to environmental concentrations.   
 

Table 2.2  Human biomonitoring data for Benzene 
 

Authors and year Benzene Conc (ng/L) Remarks 
Ashley et al. (1994) 
Needham et al. (1995) 

Mean: 130 
Median: 61  
95th Per: 480 
5th Per: ND  

• Samples from 
NHANES III 

• Reference group of 
individuals in US 

Perbellini et al. (1988) Mean: 184 
Median: 166 

Non-smokers 
Sampled in Italy 
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Range: 49 – 438 
Perbellini et al. (1988) Mean: 453 

Median: 458 
Range: 92-1136 

Smokers 
Sampled in Italy 

Brugnone et al. (1998, 
1999) 

Mean: 123 
Median: 110 
Range: 15-462 

Nonsmokers 
Sampled in Italy 

Brugnone et al. (1998, 
1999) 

Mean: 264 
Median: 210 
Range: 28-940 

Smokers 
Sampled in Italy 

Fustinoni et al. (1996) 
 

Median: 241  
Median: 365  

Non-smokers 
Smokers 

Kok and Ong (1994) Range: 50-219 
Range: 81-629  

Non-smokers 
Smokers 

Brugnone et al. (1992) Mean: 381 
Median: 291 
Range: 7 – 2241 
95th per: 901 

Smokers 
Sampled in Italy 

Brugnone et al. (1992) Mean: 205 
Median: 163 
Range: 7-924 
95th per: 514 

Nonsmokers 
Sampled in Italy 

Angerer et al. (1991)  Mean: 176 (nonsmokers) 
Range: 80-300 
(nonsmokers) 
Mena: 211 (smokers) 
Range: 130 – 430 (smokers) 

Sampled in Germany 

Mannino et al. (1995) Median: 290 
Range: 120 - 1970 

People exposed to gas 
fumes and auto exhaust in 
Albany, NY. 

Goergens et al. (1991) Mean: 239 
Median: 216 
Range: 83-571 

Nonsmokers 

Goergens et al. (1991) Mean: 163 
Median: 144 
Range: 52-278 

Nonsmokers 

Brugnone et al. (1989) Mean: 158 (nonsmokers) 
Median: 105 (nonsmokers) 
Mean: 256 (smokers) 
Median: 239 (smokers) 

Blood donors, in Italy 

Hajimiragha et al. (1989) Mean: 190 (nonsmokers) 
Median: 218 ( idem) 
Range: 112-455 (idem) 
Mean: 547 (smokers) 
Median: 493 (smokers) 
Range: 287-947 (smokers) 

Sampled in Germany 
(Dusseldorf and 
surrounding areas) 
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After considering the above studies, the biomonitoring data from the  CDC/ATSDR studies 
by Ashley et al. (1994) and Mannino et al. (1995) will be used for dose reconstruction (see 
Appendix C, Section 3.3).  Only the U.S. biomonitoring studies were considered due to 
concerns that foreign studies are frequently conducted under local conditions (pollution 
levels, local allowable exposure concentrations (norms), and personal activity/habits) that are 
very different from the U.S.  
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3.0 PBPK Modeling and Interpretation 
 
3.1 Reconstruction of Human PBPK models for Benzene 
 

This section discusses the reconstruction of the human PBPK models for benzene 
(into Microsoft EXCEL® and Advanced Continuous Simulation Language (ACSL®)) and 
the successful reproduction of previously published simulations of benzene kinetics in 
humans. 
 
The PBPK model used in this study describes the organism as a set of tissue compartments 
interconnected by systemic circulation and a gas-exchange lung (Figure 3.1).  The 
compartments refer to liver, slowly perfused tissues, richly perfused tissues, adipose tissue 
(fat), and the bone marrow.  The rate of change in the amount of benzene in each non-
metabolizing tissue compartment is described as follows (Note: all abbreviations are defined 
in the legend for Figure 3.2): 
 

)( vtat
t

t CCQ
dt

dCV −=           (1) 

 
 The rate of change in benzene concentration in liver is described as follows: 
 

dt
dA

dt
dACCQ

dt
dCV bmmet

vtat
t

t −−−= )]([        (2) 

 
In lay terms, the above equation signifies: 
 

Rate of change in the amount of the chemical in the tissue = (blood flow x 
arteriovenous concentration difference) – rate of loss due to metabolism 

 
The rate of the amount metabolized was described as a saturable process as follows: 
 

vtm

vtmaxmet

CK
CV

dt
dA

+
=        (3) 

 
 In the benzene PBPK model, the mixed venous blood concentration has been 
calculated as follows: 
 

c

n

t
vtt

v
Q

CQ
C

∑
=       (4) 

 
The above equation represents the steady-state solution of the mass-balance differential 
equation for venous blood:  
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( ) ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

n

t
cvvttbb QCCQdt/dCV       (5) 

 
The arterial blood concentration of benzene is computed with the following equation: 

 

⎟
⎠
⎞

⎜
⎝
⎛+

+
=

b

p
c

vcinhp
a

P
QQ

CQCQC      (6) 

 
The benzene PBPK model comprises of the above equations, which are interconnected as 
shown in Figure 3.2. 
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FIGURE 3.1:  Conceptual representation of the PBPK model for benzene.  

 

Note: The bone marrow was separated out of the richly perfused tissues compartment for 
modeling benzene. 
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FIGURE 3.2: Conceptual and fundamental representations of the PBPK model for benzene 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend:  Cinh and Calv refer to inhaled and exhaled benzene concentrations. Cv and Ca refer to venous and arterial 
blood concentrations. Pb refers to blood:air partition coefficient.  Qp and Qc refer to alveolar ventilation and cardiac output. 
Cvi, Vi, Pi, Ai and Qi refer to venous blood concentrations leaving tissue compartments, tissue volumes, tissue:blood 
partition coefficients, amount in tissues and blood flow to tissues (i.e., f: adipose tissue, s: slowly perfused tissues, r: richly 
perfused tissues, and l: liver). Vmax, Km and Amet refer to the maximal velocity of metabolism, Michaëlis affinity constant, 
and amount metabolized.  dt refers to integration interaval.  Please note that the bone marrow was separated out of the richly 
perfused tissues compartment for modeling benzene. 
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The numerical values of the parameters for the benzene human PBPK models are 

provided in Figure 3.3.  These parameter values were used to solve the equations in EXCEL 
to generate the blood kinetics of benzene, as per the original paper (Travis et al. 1990).  
Using Euler algorithm for integration of differential equations, the PBPK model was solved 
in EXCEL spreadsheets.  Accordingly, once (i) the numerical values of model parameters 
were provided, (ii) the equations in the first and subsequent rows of the spreadsheet entered, 
(iii) the time interval for integration specified, and (iv) the required number of cells chosen, 
the simulation begins.   

 
The reconstructed PBPK model was used to reproduce the inhalation 

pharmacokinetics of benzene in humans, as per the original modeling paper.  Accordingly, 
the PBPK model was used to simulate the blood kinetics in human volunteers exposed to 25 
ppm benzene for 2 hours (original experimental data published in Travis et al. 1990 study 
were retrieved and used in the present study). A compact disc (CD) containing the human 
PBPK model codes for benzene written in Excel and ACSL was included in this project and 
is available upon request.  These codes can be used to model the kinetics of benzene in 
humans using a defined inhalation exposure scenario.  
 

In sum, these results show that the human PBPK models constructed in this study 
provide the same simulations as those obtained/reported by authors of the original modeling 
paper during the process of validation of the benzene model. 
 
 
FIGURE 3.3:  Values of parameters of the benzene PBPK model. 

Tissue
Q(L/hr) V(L) Pi Pb Vmax km

Body © 300,00 70
Lung (p) 372,00
Liver (l) 75,00 1,82 1,49 29,0 0,35
Fat (f) 15,00 13,3 54,86
Bone marrow (bm) 12,00 2,8 16,22 1,16 0,35
Richly ® 132,00 3,5 1,49
Slowly (s) 66,00 40,6 2,03
Blood (b) 9,5

Cinh(ppm) 25 hr
Cinh(mg/L) 0,079867076 0,005
Length(hr) 2
MW 78,11

Biochemical
Human PBPK Model Parameters - Benzene

Physiological Physicochemical

Exposure condition Time function

Integration interval(t)
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FIGURE 3.4:  Comparison of PBPK model simulations of venous blood concentrations of 
benzene with experimental data (symbols) obtained in humans exposed for 2 hr to 25 ppm. 
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FIGURE 3.5:  Comparison of PBPK model simulations of alveolar air concentrations of 
benzene with experimental data (symbols) obtained in humans exposed for 2 hr to 25 ppm. 
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3.2 Pharmacokinetic Relationship between Blood and Inhaled Air  
 

In order to establish the relationship between the inhalation exposure concentration 
and blood concentration, both the duration of exposure and time of sampling should be 
known.  However, for the environmental exposure situation, the blood concentrations of 
volatile chemicals such as benzene are likely to attain steady-state.  The steady-state, in the 
present context, is defined as the situation during which the blood concentration does not 
change even though the exposure is continuing.  During steady-state, the relationship 
between environmental concentration and blood concentration of benzene should be constant 
and is independent of time (of exposure or sampling).  The relationships between the 
environmental and venous blood concentrations of benzene were established in the present 
study for exposure concentrations ranging from 0.00001 to 10 ppm.  For these exposure 
concentrations, the resulting venous blood concentrations of benzene were calculated using 
the validated human PBPK model as well as using a steady-state algoriothm. 
 

The steady-state algorithm for calculating arterial blood concentrations of volatile 
organic chemicals have been previously derived (Pelekis et al., 1997) and can be re-written to 
show that they give identical results.  In the present analysis, the steady-state blood 
concentrations obtained with algorithms were compared with the simulations of full-fledged 
human PBPK model for benzene (Table 3.1).  Both approaches give comparable results for 
exposure concentrations ranging from 0.00001 – 10 ppm. 
 

The results reported in Table 3.1 facilitate an understanding of the quantitative 
relationship between the exposure concentration and venous blood concentration of benzene.   
The quantitative relationship can be better understood, in terms of mechanistic determinants, 
by examining the steady-state equation: 
 
Cvss =   Qp x Ci (1- (QLC*E+Qbmc*Ebm)) 
  (Qp/Pb ) + (QL x E) + (Qbm* Ebm)   (7)  
 
where Cvss = steady-state venous blood concentration (mg/L), Qp = alveolar ventilation rate, 
Ci = inhaled or exposure concentration, Pb = blood:air partition coefficient, QLC = fraction of 
cardiac output flowing through the liver, E = hepatic extraction coefficient, Qbm = blood flow 
rate to bone marrow, Qbmc = fraction of cardiac output flowing through bone marrow, and 
Ebm = metabolic extraction ratio in bone marrow 
 

The numerical values of the following parameters are required for establishing the 
relationship between blood concentration (Cvss) and inhaled concentration (Ci) of benzene, at 
steady-state: (1) Qp, (2) Pb, (3) QL, (4) QLC, and (5) E. 
 
All parameter values, except the extraction ratios, were obtained directly from the PBPK 
model.  The E value was calculated as follows:  
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E  =             CLint           . 
         CLint + QL      (8) 
 
where CLint = intrinsic clearance calculated as Vmax divided by Km for first order conditions, 
and QL = liver blood rate in humans.   
 
For benzene, the E values for liver and bone marrow compartments were 0.525 and 0.216, 
respectively.  Using these parameter values in the steady-state equation (Equation 7), the 
venous blood concentrations reported in Column 2 of Tables 3.1 were obtained whereas the 
data presented in Column 3 were obtained using the validated human PBPK model.  
 
Table 3.1:  Quantitative relationship between the steady-state venous blood 

concentration (Cv)  and inhalation exposure concentration (Cinh) of 
benzene. 

 
Exposure 
Conc. 
(ppm) 

Steady-state 
algorithm 
(mg/L) 

PBPK model 
simulations 
(mg/L) 

0.00001 0.0000001 0.00000011 
0.0001 0.0000011 0.0000011 
0.001 0.00001 0.00001 
0.01 0.00011 0.00011 
0.1 0.00111 0.00110 
0.5 0.00554 0.00552 
1 0.01108 0.01108 
2.5 0.0277 0.02793 
5 0.05539 0.05667 
7.5 0.08309 0.08625 
10 0.11078 0.11672 

 
Note: The above calculations were done for humans using the appropriate 
parameter values in a steady-state algorithm as well as using a validated 
PBPK model.  The length of simulation was set to 200 hours to ensure the 
attainment of steady-state. 

 
In sum, the data reported in Table 3.1 establish the quantitative relationship between 

inhaled and blood concentrations of benzene as well as confirm that the simpler steady-state 
equation can be used for relating blood and environmental concentrations.  The 
appropriateness of the use of the developed algorithms depends on the existence of steady-
state condition.  An evaluation of the time constants indicates that exposure duration greater 
than 4 hours is likely to generate blood concentration data comparable to steady-state values 
expressed with error ranges or individual variabilities.  Time constants are benchmarks that 
indicate the time taken to attain 50% of the steady-state concentration.  These values are 
determined by the magnitude of the tissue:blood partition coefficients, tissue volumes and 
tissue blood flow rates in addition to the intrinsic clearance in the metabolizing tissues. 
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3.3 Use of the Human PBPK Model to Interpret Benzene Biomonitoring Data  
 

Following the establishment of the quantitative relationships between exposure and 
blood concentrations, Equation 7 was re-written such that exposure concentration (Ci) can be 
calculated from biomarker concentrations (Cvss).  The assumptions are that the exposure has 
lasted for several hours and that the blood concentration is near-steady-state.  The following 
are the rewritten forms of Equation 7 for computing Ci from Cvss: 
 
Ci  =  Cvss (Qp/Pb + QL x E + Qbm x Ebm)      (8) 

Qp x (1 – (QLC x E + Qbmc x Ebm)) 
 
By inserting the parameter values and simplifying the above equations, we get: 
 
Ci  = Cvss x 0.2883         (9) 
 

Using the above equation, the inhalation exposure concentration of benzene (Ci) can 
be back-calculated with information on the steady-state blood concentration (Cvss).  The 
above equation provides the same results of back-calculations as the full human PBPK 
model, for steady-state conditions.  This estimation approach assumes 100% of the blood 
concentrations are attributable to inhalation exposure.  
 

The following are examples of interpretation of benzene biomonitoring data, obtained 
using Equation 9. 
 
Example 1  
 

Ashley et al. (1994) reported the blood concentrations of benzene in 
nonoccupationally exposed U.S. population and in groups of people suspected of exposure, 
as a part of the CDC NHANES III study.  Their survey provided mean, median and 95th 
percentile values of benzene in human blood.  These blood concentration results were part of 
the human biomonitoring data that the EPA relied upon for selection of the VCCEP pilot 
chemicals.  Corresponding air concentrations were calculated from these blood 
concentrations, assuming steady-state conditions, using Equation 9.  The resulting estimated 
air concentrations are:   
 
Benzene: 
 
Ci,mean = 0.13 µg/L x  0.2883 x 1000 (L/m3) = 37.5 µg/m3  
Ci, median = 0.061 µg/L x 0.2883 x (1000 L/m3) = 17.6 µg/m3   
Ci, 95th percentile = 0.48 µg/L x 0.2883 x (1000 L/m3) = 138.4 µg/m3  
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Example 2 
 

Mannino et al. (1995) reported the median and range of benzene blood concentrations 
in people (7 smokers and 12 nonsmokers) exposed to gasoline fumes and automobile exhaust 
in Albany, NY.  These authors also reported that the median and range of exposure 
concentrations of benzene, determined using vapor badges. 
 

According to the steady-state equations developed in the present study and validated 
using the human PBPK model for benzene, the exposure concentration of benzene can be 
predicted (i.e., back-calculated).  Table 3.2 presents the modeled air concentration results 
from the back-calculation compared to the experimental measures (using vapor badges) from 
the study. 
 
Table 3.2: Comparison of Modeled Air Concentrations to Measured Air 

Concentrations Using Blood Samples from Mannino et al. 1995 
Chemical Measured  

Blood 
Concentration 
(μg/L) 

Modeled Air 
Concentration 
(μg/m3) 

Measured Air 
Concentration 
(μg/m3; vapor 
badge) 

Benzene – Median 0.29 83.6 54 
Benzene - Range 0.12 – 1.97 34.6 – 567.95 ND – 780 
 
 

These results indicate that the exposure concentrations predicted from blood 
concentrations, using steady-state equations, appear to be within a factor of approximately 
1.5 of the actual values.   It should be noted that the experimental values of blood and air 
concentrations are median of the distribution and that each value in each distribution may not 
match.  Further in this assessment a single value for alveolar ventilation was used, whereas 
the experimental data are from individuals that would likely have a range of different 
respiratory rates. Additional modeled results using the range of blood concentrations reported 
by these authors showed a similar result to that of the analysis of the median, indicating that 
the results are within a factor of approximately 1.5 of the measured data.  The detection limit 
for the non-detect (ND) values was not specified in the report.  
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4.0 Estimation of Human Milk Concentrations  
 

The objectives of this work were: (1) to reconstruct the PBPK model for simulating 
lactational transfer of benzene, and (2) to calculate benzene dose ingested by infants through 
the nursing exposure pathway.   
 
4.1 Reconstruction of the PBPK model for human lactational (milk) transfer of 

Benzene 
 

The simulation of breast feeding and lactational transfer of benzene was done 
according to a conservative schedule described by Fisher et al. (1997). All parameters for the 
PBPK model of benzene were obtained from Fisher et al. (1997), except the metabolic rate 
constants for benzene which were obtained from Tardif et al. (1995).  The Fisher et al. (1997) 
model was reproduced successfully before using it to simulate the lactational transfer of 
benzene according to the defined exposure scenarios. The parameters of the model and the 
simulations of lactational transfer are discussed below.  

 
These PBPK models describe the lactating mother as a set of tissue and milk 

compartments interconnected by systemic circulation and a gas-exchange lung.  The tissue 
compartments refer to liver, slowly perfused tissues, richly perfused tissues and adipose 
tissue (fat).  The rate of change in the amount of benzene in each non-metabolizing tissue 
compartment was described as follows (Note: all abbreviations are defined following 
Equation 17): 
 

)( vtat
t

t CCQ
dt

dCV −=           (10) 

 
 The rate of change in benzene concentration in liver was described as follows: 
 

dt
dACCQ

dt
dCV met

vtat
t

t −−= )]([         (11) 

 
In lay terms, the above equation signifies: 
 

Rate of change in the amount of the chemical in the tissue = (blood flow x 
arteriovenous concentration difference) – rate of loss due to metabolism 

 
The rate of the amount metabolized was described as a saturable process as follows: 
 

vtm

vtmaxmet

CK
CV

dt
dA

+
=        (12) 

 
 
 The mixed venous blood concentration of benzene was calculated as follows: 
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    (13) 

 
The above equation represents the steady-state solution of the mass-balance differential 
equation for venous blood:  
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The arterial blood concentration of benzene was computed with the following 

equation: 
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The equation describing the rate of change in the amount of benzene in breast milk 
(mg/hr) was calculated as: 

 
RAmilk = Qm (Ca – Cvm) – Rnurse     (16) 
 
where, 
 
Rnurse = Cmilk x Vmilk x Nurse x Szone    (17) 

 
The amount of milk in the mammary tissue lumen was computed as the difference between 
the rate of production and rate of loss.  The loss rate was set equal to the nursing rate and the 
volume of milk in the mammary tissue. 
 

In the above equations, the abbreviations are as follows: 
 

Cinh = inhaled concentrations of benzene 
Cv = venous concentrations of benzene 
Ca = arterial blood concentrations of benzene 
Pb = blood:air partition coefficient   
Qp = alveolar ventilation 
Qc = cardiac output  
Cvi  = venous blood concentrations leaving tissue compartments 
Vi = tissue volumes 
Pi = tissue:blood partition coefficients 
Ai = amount in tissues 
Qi = blood flow to tissues  
Vmax = maximal velocity of metabolism 
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Km = Michaëlis affinity constant 
Amet = amount metabolized   
dt = integration interval. 

 
Regarding the milk-related parameters, the abbreviations are as follows: 

 
RAmilk = rate of change in amount of chemical in breast milk 
Rnurse = rate of change in amount of chemical ingested by nursing infant 
Cmilk = concentration of chemical in breast milk 
Vmilk = volume of milk currently in the mammary tissue lumen 
Nurse = infant nursing rate 
Szone = switch function to turn on or turn off the nursing over a 24-hr period 
Cvm = venous blood leaving the milk compartment 
Qm = blood flow to the mammary tissue 

 
 

4.2 Model Simulations of Human Milk Benzene Concentrations and Lactational 
Transfer Estimates 

 
As mentioned before, the simulation of breast feeding and lactational transfer of 

benzene was done according to the schedule described by Fisher et al. (1997). In this 
schedule, working mothers were assumed to be exposed at the respective workplace TWA 
concentrations for 8 hours, on working days, and background concentrations of benzene for 
the remaining 16 hours of the day.  Nonoccupationally exposed mothers were assumed to be 
exposed to background concentrations for 24 hours.  Eight nursing events were assumed to 
occur each day, lasting 12 minutes each, with 115 mL of milk ingested per nursing event, 
yielding a daily milk consumption of 0.92 L.  For occupationally-exposed mothers, three 
individual nursing events (occurring during 30-minute breaks using a milk collection devise) 
were assumed to occur during working hours and the remaining five nursing events were 
assumed to occur after working hours.  The nursing events that occurred during working 
hours all occurred after the benzene blood concentrations had reached steady-state with the 
workplace exposures and occurred at 2.1, 4.1 and 7.1 hours into the workday.  The remaining 
five nursing events occurred at 2, 5, 10, 13 and 15 hours post-work-shift.  If the working day 
were assumed to begin at 8:00 a.m., this would amount to nursing events occurring at 2:00 
a.m., 5:00 a.m., 7:00 a.m., 10:00 a.m., 12:00 p.m., 3:00 p.m., 6:00 p.m., and 9:00 p.m.   

 
The Fisher et al. (1997) paper included modeling results for occupationally exposed 

mothers based on the assumption that benzene-exposed working mothers were exposed at the 
previous TLV of 10 ppm (8hr TWA).  The current occupational exposure information 
presented in the Benzene VCCEP Exposure Assessment indicates that occupational exposure 
to benzene is considerably lower than this, so these model simulations employed the 
exposure values reported the Benzene VCCEP Exposure Assessment. The exposure 
concentrations and durations specified in the model are presented in Table 4.1.   
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Table 4.1.  Summary of Mothers’ Benzene Exposures Used in PBPK Lactation Model 
Simulation 

 

Exposure Category 

Exposure 
Concentration 
(μg/L) 

Exposure 
Duration 
(hrs) 

Rural, typical 0.0026 24 
Rural, high end 0.011 24 
Urban, typical 0.0026 24 
Urban, high end 0.011 24 
Occupational, typical 0.35 8 
-      Background, Urban typical 0.0026 16 
Occupational, high end 1.22 8 
-     Background, Urban high end 0.011 16 

 
 
The PBPK modeling results are presented in Table 4.2.  The model predicted that the 

daily mass of benzene transferred to human milk in the lactating mother ranges from 
0.000016 mg for the typical rural or urban exposed mother to 0.00491 mg for the high-end 
occupationally exposed mother.  This corresponds to daily benzene doses of 0.0000023 
mg/kg to 0.00068 mg/kg to the child from lactation.  
 

Table 4.2. PBPK model predictions of amount transferred to milk  
in lactating mothers exposed to benzene. 

 

Exposure Category 

Modeled Human 
Milk Benzene 
Concentration 

(µg/L) 

Mass of Benzene 
Consumed by 

Child (mg/day) 

Dose 
(mg/kg-day) 

Rural, typical 0.02 0.000016 2.3E-06 
Rural, high end 0.1 0.000115 1.6E-05 
Urban, typical 0.02 0.000016 2.3E-06 
Urban, high end 0.1 0.000115 1.6E-05 
Occupational, typical +  

Background, Urban typical
1.5 0.0014 1.9E-04  

Occupational, high end +  
Background, Urban high end

5.3 0.00491 6.8E-04 
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